/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This program constructs binary patches for images -- such as boot.img and recovery.img -- that * consist primarily of large chunks of gzipped data interspersed with uncompressed data. Doing a * naive bsdiff of these files is not useful because small changes in the data lead to large * changes in the compressed bitstream; bsdiff patches of gzipped data are typically as large as * the data itself. * * To patch these usefully, we break the source and target images up into chunks of two types: * "normal" and "gzip". Normal chunks are simply patched using a plain bsdiff. Gzip chunks are * first expanded, then a bsdiff is applied to the uncompressed data, then the patched data is * gzipped using the same encoder parameters. Patched chunks are concatenated together to create * the output file; the output image should be *exactly* the same series of bytes as the target * image used originally to generate the patch. * * To work well with this tool, the gzipped sections of the target image must have been generated * using the same deflate encoder that is available in applypatch, namely, the one in the zlib * library. In practice this means that images should be compressed using the "minigzip" tool * included in the zlib distribution, not the GNU gzip program. * * An "imgdiff" patch consists of a header describing the chunk structure of the file and any * encoding parameters needed for the gzipped chunks, followed by N bsdiff patches, one per chunk. * * For a diff to be generated, the source and target must be in well-formed zip archive format; * or they are image files with the same "chunk" structure: that is, the same number of gzipped and * normal chunks in the same order. Android boot and recovery images currently consist of five * chunks: a small normal header, a gzipped kernel, a small normal section, a gzipped ramdisk, and * finally a small normal footer. * * Caveats: we locate gzipped sections within the source and target images by searching for the * byte sequence 1f8b0800: 1f8b is the gzip magic number; 08 specifies the "deflate" encoding * [the only encoding supported by the gzip standard]; and 00 is the flags byte. We do not * currently support any extra header fields (which would be indicated by a nonzero flags byte). * We also don't handle the case when that byte sequence appears spuriously in the file. (Note * that it would have to occur spuriously within a normal chunk to be a problem.) * * * The imgdiff patch header looks like this: * * "IMGDIFF2" (8) [magic number and version] * chunk count (4) * for each chunk: * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] * if chunk type == CHUNK_NORMAL: * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * if chunk type == CHUNK_GZIP: (version 1 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * gzip header len (4) * gzip header (gzip header len) * gzip footer (8) * if chunk type == CHUNK_DEFLATE: (version 2 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * if chunk type == RAW: (version 2 only) * target len (4) * data (target len) * * All integers are little-endian. "source start" and "source len" specify the section of the * input image that comprises this chunk, including the gzip header and footer for gzip chunks. * "source expanded len" is the size of the uncompressed source data. "target expected len" is the * size of the uncompressed data after applying the bsdiff patch. The next five parameters * specify the zlib parameters to be used when compressing the patched data, and the next three * specify the header and footer to be wrapped around the compressed data to create the output * chunk (so that header contents like the timestamp are recreated exactly). * * After the header there are 'chunk count' bsdiff patches; the offset of each from the beginning * of the file is specified in the header. * * This tool can take an optional file of "bonus data". This is an extra file of data that is * appended to chunk #1 after it is compressed (it must be a CHUNK_DEFLATE chunk). The same file * must be available (and passed to applypatch with -b) when applying the patch. This is used to * reduce the size of recovery-from-boot patches by combining the boot image with recovery ramdisk * information that is stored on the system partition. * * When generating the patch between two zip files, this tool has an option "--block-limit" to * split the large source/target files into several pair of pieces, with each piece has at most * *limit* blocks. When this option is used, we also need to output the split info into the file * path specified by "--split-info". * * Format of split info file: * 2 [version of imgdiff] * n [count of split pieces] * , , [size and ranges for split piece#1] * ... * , , [size and ranges for split piece#n] * * To split a pair of large zip files, we walk through the chunks in target zip and search by its * entry_name in the source zip. If the entry_name is non-empty and a matching entry in source * is found, we'll add the source entry to the current split source image; otherwise we'll skip * this chunk and later do bsdiff between all the skipped trunks and the whole split source image. * We move on to the next pair of pieces if the size of the split source image reaches the block * limit. * * After the split, the target pieces are continuous and block aligned, while the source pieces * are mutually exclusive. Some of the source blocks may not be used if there's no matching * entry_name in the target; as a result, they won't be included in any of these split source * images. Then we will generate patches accordingly between each split image pairs; in particular, * the unmatched trunks in the split target will diff against the entire split source image. * * For example: * Input: [src_image, tgt_image] * Split: [src-0, tgt-0; src-1, tgt-1, src-2, tgt-2] * Diff: [ patch-0; patch-1; patch-2] * * Patch: [(src-0, patch-0) = tgt-0; (src-1, patch-1) = tgt-1; (src-2, patch-2) = tgt-2] * Concatenate: [tgt-0 + tgt-1 + tgt-2 = tgt_image] */ #include "applypatch/imgdiff.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "applypatch/imgdiff_image.h" #include "rangeset.h" using android::base::get_unaligned; static constexpr size_t VERSION = 2; // We assume the header "IMGDIFF#" is 8 bytes. static_assert(VERSION <= 9, "VERSION occupies more than one byte."); static constexpr size_t BLOCK_SIZE = 4096; static constexpr size_t BUFFER_SIZE = 0x8000; // If we use this function to write the offset and length (type size_t), their values should not // exceed 2^63; because the signed bit will be casted away. static inline bool Write8(int fd, int64_t value) { return android::base::WriteFully(fd, &value, sizeof(int64_t)); } // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk // size). static inline bool Write4(int fd, int32_t value) { return android::base::WriteFully(fd, &value, sizeof(int32_t)); } // Trim the head or tail to align with the block size. Return false if the chunk has nothing left // after alignment. static bool AlignHead(size_t* start, size_t* length) { size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE; if (*length <= residual) { *length = 0; return false; } // Trim the data in the beginning. *start += residual; *length -= residual; return true; } static bool AlignTail(size_t* start, size_t* length) { size_t residual = (*start + *length) % BLOCK_SIZE; if (*length <= residual) { *length = 0; return false; } // Trim the data in the end. *length -= residual; return true; } // Remove the used blocks from the source chunk to make sure the source ranges are mutually // exclusive after split. Return false if we fail to get the non-overlapped ranges. In such // a case, we'll skip the entire source chunk. static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) { if (!used_ranges.Overlaps(*start, *length)) { return true; } // TODO find the largest non-overlap chunk. printf("Removing block %s from %zu - %zu\n", used_ranges.ToString().c_str(), *start, *start + *length - 1); // If there's no duplicate entry name, we should only overlap in the head or tail block. Try to // trim both blocks. Skip this source chunk in case it still overlaps with the used ranges. if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) { return true; } if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) { return true; } printf("Failed to remove the overlapped block ranges; skip the source\n"); return false; } static const struct option OPTIONS[] = { { "zip-mode", no_argument, nullptr, 'z' }, { "bonus-file", required_argument, nullptr, 'b' }, { "block-limit", required_argument, nullptr, 0 }, { "debug-dir", required_argument, nullptr, 0 }, { "split-info", required_argument, nullptr, 0 }, { nullptr, 0, nullptr, 0 }, }; ImageChunk::ImageChunk(int type, size_t start, const std::vector* file_content, size_t raw_data_len, std::string entry_name) : type_(type), start_(start), input_file_ptr_(file_content), raw_data_len_(raw_data_len), compress_level_(6), entry_name_(std::move(entry_name)) { CHECK(file_content != nullptr) << "input file container can't be nullptr"; } const uint8_t* ImageChunk::GetRawData() const { CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size()); return input_file_ptr_->data() + start_; } const uint8_t * ImageChunk::DataForPatch() const { if (type_ == CHUNK_DEFLATE) { return uncompressed_data_.data(); } return GetRawData(); } size_t ImageChunk::DataLengthForPatch() const { if (type_ == CHUNK_DEFLATE) { return uncompressed_data_.size(); } return raw_data_len_; } bool ImageChunk::operator==(const ImageChunk& other) const { if (type_ != other.type_) { return false; } return (raw_data_len_ == other.raw_data_len_ && memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0); } void ImageChunk::SetUncompressedData(std::vector data) { uncompressed_data_ = std::move(data); } bool ImageChunk::SetBonusData(const std::vector& bonus_data) { if (type_ != CHUNK_DEFLATE) { return false; } uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end()); return true; } void ImageChunk::ChangeDeflateChunkToNormal() { if (type_ != CHUNK_DEFLATE) return; type_ = CHUNK_NORMAL; // No need to clear the entry name. uncompressed_data_.clear(); } bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const { if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) { return false; } return (other.start_ == start_ + raw_data_len_); } void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) { CHECK(IsAdjacentNormal(other)); raw_data_len_ = raw_data_len_ + other.raw_data_len_; } bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src, std::vector* patch_data, bsdiff::SuffixArrayIndexInterface** bsdiff_cache) { #if defined(__ANDROID__) char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX"; #else char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; #endif int fd = mkstemp(ptemp); if (fd == -1) { printf("MakePatch failed to create a temporary file: %s\n", strerror(errno)); return false; } close(fd); int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(), tgt.DataLengthForPatch(), ptemp, bsdiff_cache); if (r != 0) { printf("bsdiff() failed: %d\n", r); return false; } android::base::unique_fd patch_fd(open(ptemp, O_RDONLY)); if (patch_fd == -1) { printf("failed to open %s: %s\n", ptemp, strerror(errno)); return false; } struct stat st; if (fstat(patch_fd, &st) != 0) { printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno)); return false; } size_t sz = static_cast(st.st_size); patch_data->resize(sz); if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) { printf("failed to read \"%s\" %s\n", ptemp, strerror(errno)); unlink(ptemp); return false; } unlink(ptemp); return true; } bool ImageChunk::ReconstructDeflateChunk() { if (type_ != CHUNK_DEFLATE) { printf("attempt to reconstruct non-deflate chunk\n"); return false; } // We only check two combinations of encoder parameters: level 6 (the default) and level 9 // (the maximum). for (int level = 6; level <= 9; level += 3) { if (TryReconstruction(level)) { compress_level_ = level; return true; } } return false; } /* * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored * in the chunk, and checks that it matches exactly the compressed data we started with (also * stored in the chunk). */ bool ImageChunk::TryReconstruction(int level) { z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = uncompressed_data_.size(); strm.next_in = uncompressed_data_.data(); int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY); if (ret < 0) { printf("failed to initialize deflate: %d\n", ret); return false; } std::vector buffer(BUFFER_SIZE); size_t offset = 0; do { strm.avail_out = buffer.size(); strm.next_out = buffer.data(); ret = deflate(&strm, Z_FINISH); if (ret < 0) { printf("failed to deflate: %d\n", ret); return false; } size_t compressed_size = buffer.size() - strm.avail_out; if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) { // mismatch; data isn't the same. deflateEnd(&strm); return false; } offset += compressed_size; } while (ret != Z_STREAM_END); deflateEnd(&strm); if (offset != raw_data_len_) { // mismatch; ran out of data before we should have. return false; } return true; } PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector data) : type_(tgt.GetType()), source_start_(src.GetStartOffset()), source_len_(src.GetRawDataLength()), source_uncompressed_len_(src.DataLengthForPatch()), target_start_(tgt.GetStartOffset()), target_len_(tgt.GetRawDataLength()), target_uncompressed_len_(tgt.DataLengthForPatch()), target_compress_level_(tgt.GetCompressLevel()), data_(std::move(data)) {} // Construct a CHUNK_RAW patch from the target data directly. PatchChunk::PatchChunk(const ImageChunk& tgt) : type_(CHUNK_RAW), source_start_(0), source_len_(0), source_uncompressed_len_(0), target_start_(tgt.GetStartOffset()), target_len_(tgt.GetRawDataLength()), target_uncompressed_len_(tgt.DataLengthForPatch()), target_compress_level_(tgt.GetCompressLevel()), data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {} // Return true if raw data is smaller than the patch size. bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) { size_t target_len = tgt.GetRawDataLength(); return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size)); } void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) { if (type_ == CHUNK_DEFLATE) { source_start_ = src_range.GetOffsetInRangeSet(source_start_); } } // Header size: // header_type 4 bytes // CHUNK_NORMAL 8*3 = 24 bytes // CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes // CHUNK_RAW 4 bytes + patch_size size_t PatchChunk::GetHeaderSize() const { switch (type_) { case CHUNK_NORMAL: return 4 + 8 * 3; case CHUNK_DEFLATE: return 4 + 8 * 5 + 4 * 5; case CHUNK_RAW: return 4 + 4 + data_.size(); default: CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here. return 0; } } // Return the offset of the next patch into the patch data. size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset) const { Write4(fd, type_); switch (type_) { case CHUNK_NORMAL: printf("normal (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); Write8(fd, static_cast(source_start_)); Write8(fd, static_cast(source_len_)); Write8(fd, static_cast(offset)); return offset + data_.size(); case CHUNK_DEFLATE: printf("deflate (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); Write8(fd, static_cast(source_start_)); Write8(fd, static_cast(source_len_)); Write8(fd, static_cast(offset)); Write8(fd, static_cast(source_uncompressed_len_)); Write8(fd, static_cast(target_uncompressed_len_)); Write4(fd, target_compress_level_); Write4(fd, ImageChunk::METHOD); Write4(fd, ImageChunk::WINDOWBITS); Write4(fd, ImageChunk::MEMLEVEL); Write4(fd, ImageChunk::STRATEGY); return offset + data_.size(); case CHUNK_RAW: printf("raw (%10zu, %10zu)\n", target_start_, target_len_); Write4(fd, static_cast(data_.size())); if (!android::base::WriteFully(fd, data_.data(), data_.size())) { CHECK(false) << "failed to write " << data_.size() << " bytes patch"; } return offset; default: CHECK(false) << "unexpected chunk type: " << type_; return offset; } } size_t PatchChunk::PatchSize() const { if (type_ == CHUNK_RAW) { return GetHeaderSize(); } return GetHeaderSize() + data_.size(); } // Write the contents of |patch_chunks| to |patch_fd|. bool PatchChunk::WritePatchDataToFd(const std::vector& patch_chunks, int patch_fd) { // Figure out how big the imgdiff file header is going to be, so that we can correctly compute // the offset of each bsdiff patch within the file. size_t total_header_size = 12; for (const auto& patch : patch_chunks) { total_header_size += patch.GetHeaderSize(); } size_t offset = total_header_size; // Write out the headers. if (!android::base::WriteStringToFd("IMGDIFF" + std::to_string(VERSION), patch_fd)) { printf("failed to write \"IMGDIFF%zu\": %s\n", VERSION, strerror(errno)); return false; } Write4(patch_fd, static_cast(patch_chunks.size())); for (size_t i = 0; i < patch_chunks.size(); ++i) { printf("chunk %zu: ", i); offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset); } // Append each chunk's bsdiff patch, in order. for (const auto& patch : patch_chunks) { if (patch.type_ == CHUNK_RAW) { continue; } if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) { printf("failed to write %zu bytes patch to patch_fd\n", patch.data_.size()); return false; } } return true; } ImageChunk& Image::operator[](size_t i) { CHECK_LT(i, chunks_.size()); return chunks_[i]; } const ImageChunk& Image::operator[](size_t i) const { CHECK_LT(i, chunks_.size()); return chunks_[i]; } void Image::MergeAdjacentNormalChunks() { size_t merged_last = 0, cur = 0; while (cur < chunks_.size()) { // Look for normal chunks adjacent to the current one. If such chunk exists, extend the // length of the current normal chunk. size_t to_check = cur + 1; while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) { chunks_[cur].MergeAdjacentNormal(chunks_[to_check]); to_check++; } if (merged_last != cur) { chunks_[merged_last] = std::move(chunks_[cur]); } merged_last++; cur = to_check; } if (merged_last < chunks_.size()) { chunks_.erase(chunks_.begin() + merged_last, chunks_.end()); } } void Image::DumpChunks() const { std::string type = is_source_ ? "source" : "target"; printf("Dumping chunks for %s\n", type.c_str()); for (size_t i = 0; i < chunks_.size(); ++i) { printf("chunk %zu: ", i); chunks_[i].Dump(); } } bool Image::ReadFile(const std::string& filename, std::vector* file_content) { CHECK(file_content != nullptr); android::base::unique_fd fd(open(filename.c_str(), O_RDONLY)); if (fd == -1) { printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno)); return false; } struct stat st; if (fstat(fd, &st) != 0) { printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno)); return false; } size_t sz = static_cast(st.st_size); file_content->resize(sz); if (!android::base::ReadFully(fd, file_content->data(), sz)) { printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno)); return false; } fd.reset(); return true; } bool ZipModeImage::Initialize(const std::string& filename) { if (!ReadFile(filename, &file_content_)) { return false; } // Omit the trailing zeros before we pass the file to ziparchive handler. size_t zipfile_size; if (!GetZipFileSize(&zipfile_size)) { printf("failed to parse the actual size of %s\n", filename.c_str()); return false; } ZipArchiveHandle handle; int err = OpenArchiveFromMemory(const_cast(file_content_.data()), zipfile_size, filename.c_str(), &handle); if (err != 0) { printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err)); CloseArchive(handle); return false; } if (!InitializeChunks(filename, handle)) { CloseArchive(handle); return false; } CloseArchive(handle); return true; } // Iterate the zip entries and compose the image chunks accordingly. bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) { void* cookie; int ret = StartIteration(handle, &cookie, nullptr, nullptr); if (ret != 0) { printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret)); return false; } // Create a list of deflated zip entries, sorted by offset. std::vector> temp_entries; ZipString name; ZipEntry entry; while ((ret = Next(cookie, &entry, &name)) == 0) { if (entry.method == kCompressDeflated || limit_ > 0) { std::string entry_name(name.name, name.name + name.name_length); temp_entries.emplace_back(entry_name, entry); } } if (ret != -1) { printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret)); return false; } std::sort(temp_entries.begin(), temp_entries.end(), [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; }); EndIteration(cookie); // For source chunks, we don't need to compose chunks for the metadata. if (is_source_) { for (auto& entry : temp_entries) { if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) { printf("Failed to add %s to source chunks\n", entry.first.c_str()); return false; } } // Add the end of zip file (mainly central directory) as a normal chunk. size_t entries_end = 0; if (!temp_entries.empty()) { entries_end = static_cast(temp_entries.back().second.offset + temp_entries.back().second.compressed_length); } CHECK_LT(entries_end, file_content_.size()); chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_, file_content_.size() - entries_end); return true; } // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two // deflate entries as CHUNK_NORMAL. size_t pos = 0; size_t nextentry = 0; while (pos < file_content_.size()) { if (nextentry < temp_entries.size() && static_cast(pos) == temp_entries[nextentry].second.offset) { // Add the next zip entry. std::string entry_name = temp_entries[nextentry].first; if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) { printf("Failed to add %s to target chunks\n", entry_name.c_str()); return false; } pos += temp_entries[nextentry].second.compressed_length; ++nextentry; continue; } // Use a normal chunk to take all the data up to the start of the next entry. size_t raw_data_len; if (nextentry < temp_entries.size()) { raw_data_len = temp_entries[nextentry].second.offset - pos; } else { raw_data_len = file_content_.size() - pos; } chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len); pos += raw_data_len; } return true; } bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry) { size_t compressed_len = entry->compressed_length; if (compressed_len == 0) return true; // Split the entry into several normal chunks if it's too large. if (limit_ > 0 && compressed_len > limit_) { int count = 0; while (compressed_len > 0) { size_t length = std::min(limit_, compressed_len); std::string name = entry_name + "-" + std::to_string(count); chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length, name); count++; compressed_len -= length; } } else if (entry->method == kCompressDeflated) { size_t uncompressed_len = entry->uncompressed_length; std::vector uncompressed_data(uncompressed_len); int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len); if (ret != 0) { printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len, ErrorCodeString(ret)); return false; } ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name); curr.SetUncompressedData(std::move(uncompressed_data)); chunks_.push_back(std::move(curr)); } else { chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name); } return true; } // EOCD record // offset 0: signature 0x06054b50, 4 bytes // offset 4: number of this disk, 2 bytes // ... // offset 20: comment length, 2 bytes // offset 22: comment, n bytes bool ZipModeImage::GetZipFileSize(size_t* input_file_size) { if (file_content_.size() < 22) { printf("file is too small to be a zip file\n"); return false; } // Look for End of central directory record of the zip file, and calculate the actual // zip_file size. for (int i = file_content_.size() - 22; i >= 0; i--) { if (file_content_[i] == 0x50) { if (get_unaligned(&file_content_[i]) == 0x06054b50) { // double-check: this archive consists of a single "disk". CHECK_EQ(get_unaligned(&file_content_[i + 4]), 0); uint16_t comment_length = get_unaligned(&file_content_[i + 20]); size_t file_size = i + 22 + comment_length; CHECK_LE(file_size, file_content_.size()); *input_file_size = file_size; return true; } } } // EOCD not found, this file is likely not a valid zip file. return false; } ImageChunk ZipModeImage::PseudoSource() const { CHECK(is_source_); return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size()); } const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const { if (name.empty()) { return nullptr; } for (auto& chunk : chunks_) { if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) { continue; } if (chunk.GetEntryName() == name) { return &chunk; } // Edge case when target chunk is split due to size limit but source chunk isn't. if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) { return &chunk; } // TODO handle the .so files with incremental version number. // (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so) } return nullptr; } ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) { return const_cast( static_cast(this)->FindChunkByName(name, find_normal)); } bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) { for (auto& tgt_chunk : *tgt_image) { if (tgt_chunk.GetType() != CHUNK_DEFLATE) { continue; } ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName()); if (src_chunk == nullptr) { tgt_chunk.ChangeDeflateChunkToNormal(); } else if (tgt_chunk == *src_chunk) { // If two deflate chunks are identical (eg, the kernel has not changed between two builds), // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial // patch to the compressed data, rather than uncompressing and recompressing to apply the // trivial patch to the uncompressed data. tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk->ChangeDeflateChunkToNormal(); } else if (!tgt_chunk.ReconstructDeflateChunk()) { // We cannot recompress the data and get exactly the same bits as are in the input target // image. Treat the chunk as a normal non-deflated chunk. printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n", tgt_chunk.GetEntryName().c_str()); tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk->ChangeDeflateChunkToNormal(); } } // For zips, we only need merge normal chunks for the target: deflated chunks are matched via // filename, and normal chunks are patched using the entire source file as the source. if (tgt_image->limit_ == 0) { tgt_image->MergeAdjacentNormalChunks(); tgt_image->DumpChunks(); } return true; } // For each target chunk, look for the corresponding source chunk by the zip_entry name. If // found, add the range of this chunk in the original source file to the block aligned source // ranges. Construct the split src & tgt image once the size of source range reaches limit. bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image, const ZipModeImage& src_image, std::vector* split_tgt_images, std::vector* split_src_images, std::vector* split_src_ranges) { CHECK_EQ(tgt_image.limit_, src_image.limit_); size_t limit = tgt_image.limit_; src_image.DumpChunks(); printf("Splitting %zu tgt chunks...\n", tgt_image.NumOfChunks()); SortedRangeSet used_src_ranges; // ranges used for previous split source images. // Reserve the central directory in advance for the last split image. const auto& central_directory = src_image.cend() - 1; CHECK_EQ(CHUNK_NORMAL, central_directory->GetType()); used_src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch()); SortedRangeSet src_ranges; std::vector split_src_chunks; std::vector split_tgt_chunks; for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) { const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true); if (src == nullptr) { split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_, tgt->GetRawDataLength()); continue; } size_t src_offset = src->GetStartOffset(); size_t src_length = src->GetRawDataLength(); CHECK(src_length > 0); CHECK_LE(src_length, limit); // Make sure this source range hasn't been used before so that the src_range pieces don't // overlap with each other. if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) { split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_, tgt->GetRawDataLength()); } else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) { src_ranges.Insert(src_offset, src_length); // Add the deflate source chunk if it hasn't been aligned. if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) { split_src_chunks.push_back(*src); split_tgt_chunks.push_back(*tgt); } else { // TODO split smarter to avoid alignment of large deflate chunks split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_, tgt->GetRawDataLength()); } } else { ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks, split_src_chunks, split_tgt_images, split_src_images); split_tgt_chunks.clear(); split_src_chunks.clear(); used_src_ranges.Insert(src_ranges); split_src_ranges->push_back(std::move(src_ranges)); src_ranges.Clear(); // We don't have enough space for the current chunk; start a new split image and handle // this chunk there. tgt--; } } // TODO Trim it in case the CD exceeds limit too much. src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch()); ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks, split_src_chunks, split_tgt_images, split_src_images); split_src_ranges->push_back(std::move(src_ranges)); ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges, tgt_image.file_content_.size()); return true; } void ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image, const ZipModeImage& src_image, const SortedRangeSet& split_src_ranges, const std::vector& split_tgt_chunks, const std::vector& split_src_chunks, std::vector* split_tgt_images, std::vector* split_src_images) { CHECK(!split_tgt_chunks.empty()); // Target chunks should occupy at least one block. // TODO put a warning and change the type to raw if it happens in extremely rare cases. size_t tgt_size = split_tgt_chunks.back().GetStartOffset() + split_tgt_chunks.back().DataLengthForPatch() - split_tgt_chunks.front().GetStartOffset(); CHECK_GE(tgt_size, BLOCK_SIZE); std::vector aligned_tgt_chunks; // Align the target chunks in the beginning with BLOCK_SIZE. size_t i = 0; while (i < split_tgt_chunks.size()) { size_t tgt_start = split_tgt_chunks[i].GetStartOffset(); size_t tgt_length = split_tgt_chunks[i].GetRawDataLength(); // Current ImageChunk is long enough to align. if (AlignHead(&tgt_start, &tgt_length)) { aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_, tgt_length); break; } i++; } CHECK_LT(i, split_tgt_chunks.size()); aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1, split_tgt_chunks.end()); CHECK(!aligned_tgt_chunks.empty()); // Add a normal chunk to align the contents in the end. size_t end_offset = aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength(); if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) { aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_, BLOCK_SIZE - (end_offset % BLOCK_SIZE)); } ZipModeImage split_tgt_image(false); split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {}); split_tgt_image.MergeAdjacentNormalChunks(); // Construct the dummy source file based on the src_ranges. std::vector src_content; for (const auto& r : split_src_ranges) { size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE); src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE, src_image.file_content_.begin() + end); } // We should not have an empty src in our design; otherwise we will encounter an error in // bsdiff since src_content.data() == nullptr. CHECK(!src_content.empty()); ZipModeImage split_src_image(true); split_src_image.Initialize(split_src_chunks, std::move(src_content)); split_tgt_images->push_back(std::move(split_tgt_image)); split_src_images->push_back(std::move(split_src_image)); } void ZipModeImage::ValidateSplitImages(const std::vector& split_tgt_images, const std::vector& split_src_images, std::vector& split_src_ranges, size_t total_tgt_size) { CHECK_EQ(split_tgt_images.size(), split_src_images.size()); printf("Validating %zu images\n", split_tgt_images.size()); // Verify that the target image pieces is continuous and can add up to the total size. size_t last_offset = 0; for (const auto& tgt_image : split_tgt_images) { CHECK(!tgt_image.chunks_.empty()); CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset()); CHECK(last_offset % BLOCK_SIZE == 0); // Check the target chunks within the split image are continuous. for (const auto& chunk : tgt_image.chunks_) { CHECK_EQ(last_offset, chunk.GetStartOffset()); last_offset += chunk.GetRawDataLength(); } } CHECK_EQ(total_tgt_size, last_offset); // Verify that the source ranges are mutually exclusive. CHECK_EQ(split_src_images.size(), split_src_ranges.size()); SortedRangeSet used_src_ranges; for (size_t i = 0; i < split_src_ranges.size(); i++) { CHECK(!used_src_ranges.Overlaps(split_src_ranges[i])) << "src range " << split_src_ranges[i].ToString() << " overlaps " << used_src_ranges.ToString(); used_src_ranges.Insert(split_src_ranges[i]); } } bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image, const ZipModeImage& src_image, std::vector* patch_chunks) { printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); patch_chunks->clear(); bsdiff::SuffixArrayIndexInterface* bsdiff_cache = nullptr; for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { const auto& tgt_chunk = tgt_image[i]; if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { patch_chunks->emplace_back(tgt_chunk); continue; } const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE) ? nullptr : src_image.FindChunkByName(tgt_chunk.GetEntryName()); const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk; bsdiff::SuffixArrayIndexInterface** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr; std::vector patch_data; if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) { printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str()); return false; } printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), tgt_chunk.GetRawDataLength()); if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { patch_chunks->emplace_back(tgt_chunk); } else { patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data)); } } delete bsdiff_cache; CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks()); return true; } bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image, const std::string& patch_name) { std::vector patch_chunks; ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks); CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); android::base::unique_fd patch_fd( open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (patch_fd == -1) { printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); return false; } return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); } bool ZipModeImage::GeneratePatches(const std::vector& split_tgt_images, const std::vector& split_src_images, const std::vector& split_src_ranges, const std::string& patch_name, const std::string& split_info_file, const std::string& debug_dir) { printf("Construct patches for %zu split images...\n", split_tgt_images.size()); android::base::unique_fd patch_fd( open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (patch_fd == -1) { printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); return false; } std::vector split_info_list; for (size_t i = 0; i < split_tgt_images.size(); i++) { std::vector patch_chunks; if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i], &patch_chunks)) { printf("failed to generate split patch\n"); return false; } size_t total_patch_size = 12; for (auto& p : patch_chunks) { p.UpdateSourceOffset(split_src_ranges[i]); total_patch_size += p.PatchSize(); } if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) { return false; } size_t split_tgt_size = split_tgt_images[i].chunks_.back().GetStartOffset() + split_tgt_images[i].chunks_.back().GetRawDataLength() - split_tgt_images[i].chunks_.front().GetStartOffset(); std::string split_info = android::base::StringPrintf( "%zu %zu %s", total_patch_size, split_tgt_size, split_src_ranges[i].ToString().c_str()); split_info_list.push_back(split_info); // Write the split source & patch into the debug directory. if (!debug_dir.empty()) { std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i); android::base::unique_fd fd( open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (fd == -1) { printf("Failed to open %s\n", src_name.c_str()); return false; } if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(), split_src_images[i].PseudoSource().DataLengthForPatch())) { printf("Failed to write split source data into %s\n", src_name.c_str()); return false; } std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i); fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (fd == -1) { printf("Failed to open %s\n", patch_name.c_str()); return false; } if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) { return false; } } } // Store the split in the following format: // Line 0: imgdiff version# // Line 1: number of pieces // Line 2: patch_size_1 tgt_size_1 src_range_1 // ... // Line n+1: patch_size_n tgt_size_n src_range_n std::string split_info_string = android::base::StringPrintf( "%zu\n%zu\n", VERSION, split_info_list.size()) + android::base::Join(split_info_list, '\n'); if (!android::base::WriteStringToFile(split_info_string, split_info_file)) { printf("failed to write split info to \"%s\": %s\n", split_info_file.c_str(), strerror(errno)); return false; } return true; } bool ImageModeImage::Initialize(const std::string& filename) { if (!ReadFile(filename, &file_content_)) { return false; } size_t sz = file_content_.size(); size_t pos = 0; while (pos < sz) { // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number if (sz - pos >= 4 && get_unaligned(file_content_.data() + pos) == 0x00088b1f) { // 'pos' is the offset of the start of a gzip chunk. size_t chunk_offset = pos; // The remaining data is too small to be a gzip chunk; treat them as a normal chunk. if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) { chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos); break; } // We need three chunks for the deflated image in total, one normal chunk for the header, // one deflated chunk for the body, and another normal chunk for the footer. chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN); pos += GZIP_HEADER_LEN; // We must decompress this chunk in order to discover where it ends, and so we can update // the uncompressed_data of the image body and its length. z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = sz - pos; strm.next_in = file_content_.data() + pos; // -15 means we are decoding a 'raw' deflate stream; zlib will // not expect zlib headers. int ret = inflateInit2(&strm, -15); if (ret < 0) { printf("failed to initialize inflate: %d\n", ret); return false; } size_t allocated = BUFFER_SIZE; std::vector uncompressed_data(allocated); size_t uncompressed_len = 0, raw_data_len = 0; do { strm.avail_out = allocated - uncompressed_len; strm.next_out = uncompressed_data.data() + uncompressed_len; ret = inflate(&strm, Z_NO_FLUSH); if (ret < 0) { printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n", strm.msg, chunk_offset); break; } uncompressed_len = allocated - strm.avail_out; if (strm.avail_out == 0) { allocated *= 2; uncompressed_data.resize(allocated); } } while (ret != Z_STREAM_END); raw_data_len = sz - strm.avail_in - pos; inflateEnd(&strm); if (ret < 0) { continue; } // The footer contains the size of the uncompressed data. Double-check to make sure that it // matches the size of the data we got when we actually did the decompression. size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4; if (sz - footer_index < 4) { printf("Warning: invalid footer position; treating as a nomal chunk\n"); continue; } size_t footer_size = get_unaligned(file_content_.data() + footer_index); if (footer_size != uncompressed_len) { printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n", footer_size, uncompressed_len); continue; } ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len); uncompressed_data.resize(uncompressed_len); body.SetUncompressedData(std::move(uncompressed_data)); chunks_.push_back(std::move(body)); pos += raw_data_len; // create a normal chunk for the footer chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN); pos += GZIP_FOOTER_LEN; } else { // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect // the number of chunks to be small (5 for typical boot and recovery images). // Scan forward until we find a gzip header. size_t data_len = 0; while (data_len + pos < sz) { if (data_len + pos + 4 <= sz && get_unaligned(file_content_.data() + pos + data_len) == 0x00088b1f) { break; } data_len++; } chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len); pos += data_len; } } return true; } bool ImageModeImage::SetBonusData(const std::vector& bonus_data) { CHECK(is_source_); if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) { printf("Failed to set bonus data\n"); DumpChunks(); return false; } printf(" using %zu bytes of bonus data\n", bonus_data.size()); return true; } // In Image Mode, verify that the source and target images have the same chunk structure (ie, the // same sequence of deflate and normal chunks). bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) { // In image mode, merge the gzip header and footer in with any adjacent normal chunks. tgt_image->MergeAdjacentNormalChunks(); src_image->MergeAdjacentNormalChunks(); if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { printf("source and target don't have same number of chunks!\n"); tgt_image->DumpChunks(); src_image->DumpChunks(); return false; } for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) { printf("source and target don't have same chunk structure! (chunk %zu)\n", i); tgt_image->DumpChunks(); src_image->DumpChunks(); return false; } } for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { auto& tgt_chunk = (*tgt_image)[i]; auto& src_chunk = (*src_image)[i]; if (tgt_chunk.GetType() != CHUNK_DEFLATE) { continue; } // If two deflate chunks are identical treat them as normal chunks. if (tgt_chunk == src_chunk) { tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk.ChangeDeflateChunkToNormal(); } else if (!tgt_chunk.ReconstructDeflateChunk()) { // We cannot recompress the data and get exactly the same bits as are in the input target // image, fall back to normal printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i, tgt_chunk.GetEntryName().c_str()); tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk.ChangeDeflateChunkToNormal(); } } // For images, we need to maintain the parallel structure of the chunk lists, so do the merging // in both the source and target lists. tgt_image->MergeAdjacentNormalChunks(); src_image->MergeAdjacentNormalChunks(); if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { // This shouldn't happen. printf("merging normal chunks went awry\n"); return false; } return true; } // In image mode, generate patches against the given source chunks and bonus_data; write the // result to |patch_name|. bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image, const std::string& patch_name) { printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); std::vector patch_chunks; patch_chunks.reserve(tgt_image.NumOfChunks()); for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { const auto& tgt_chunk = tgt_image[i]; const auto& src_chunk = src_image[i]; if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { patch_chunks.emplace_back(tgt_chunk); continue; } std::vector patch_data; if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) { printf("Failed to generate patch for target chunk %zu: ", i); return false; } printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), tgt_chunk.GetRawDataLength()); if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { patch_chunks.emplace_back(tgt_chunk); } else { patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data)); } } CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); android::base::unique_fd patch_fd( open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (patch_fd == -1) { printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); return false; } return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); } int imgdiff(int argc, const char** argv) { bool zip_mode = false; std::vector bonus_data; size_t blocks_limit = 0; std::string split_info_file; std::string debug_dir; int opt; int option_index; optind = 1; // Reset the getopt state so that we can call it multiple times for test. while ((opt = getopt_long(argc, const_cast(argv), "zb:", OPTIONS, &option_index)) != -1) { switch (opt) { case 'z': zip_mode = true; break; case 'b': { android::base::unique_fd fd(open(optarg, O_RDONLY)); if (fd == -1) { printf("failed to open bonus file %s: %s\n", optarg, strerror(errno)); return 1; } struct stat st; if (fstat(fd, &st) != 0) { printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno)); return 1; } size_t bonus_size = st.st_size; bonus_data.resize(bonus_size); if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) { printf("failed to read bonus file %s: %s\n", optarg, strerror(errno)); return 1; } break; } case 0: { std::string name = OPTIONS[option_index].name; if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) { printf("failed to parse size blocks_limit: %s\n", optarg); return 1; } else if (name == "split-info") { split_info_file = optarg; } else if (name == "debug-dir") { debug_dir = optarg; } break; } default: printf("unexpected opt: %s\n", optarg); return 2; } } if (argc - optind != 3) { printf("usage: %s [options] \n", argv[0]); printf( " -z , Generate patches in zip mode, src and tgt should be zip files.\n" " -b , Bonus file in addition to src, image mode only.\n" " --block-limit, For large zips, split the src and tgt based on the block limit;\n" " and generate patches between each pair of pieces. Concatenate these\n" " patches together and output them into .\n" " --split-info, Output the split information (patch_size, tgt_size, src_ranges);\n" " zip mode with block-limit only.\n" " --debug_dir, Debug directory to put the split srcs and patches, zip mode only.\n"); return 2; } if (zip_mode) { ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE); ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE); if (!src_image.Initialize(argv[optind])) { return 1; } if (!tgt_image.Initialize(argv[optind + 1])) { return 1; } if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { return 1; } // TODO save and output the split information so that caller can create split transfer lists // accordingly. // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of // deflate chunks). if (blocks_limit > 0) { if (split_info_file.empty()) { printf("split-info path cannot be empty when generating patches with a block-limit.\n"); return 1; } std::vector split_tgt_images; std::vector split_src_images; std::vector split_src_ranges; ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images, &split_src_images, &split_src_ranges); if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges, argv[optind + 2], split_info_file, debug_dir)) { return 1; } } else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { return 1; } } else { ImageModeImage src_image(true); ImageModeImage tgt_image(false); if (!src_image.Initialize(argv[optind])) { return 1; } if (!tgt_image.Initialize(argv[optind + 1])) { return 1; } if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { return 1; } if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) { return 1; } if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { return 1; } } return 0; }