// ChunkDef.h
// Interfaces to helper types for chunk definitions. Most modules want to include this instead of cChunk.h
#pragma once
#include "BiomeDef.h"
// Used to smoothly convert to new axis ordering. One will be removed when deemed stable.
#define AXIS_ORDER_YZX 1 // Original (1.1-)
#define AXIS_ORDER_XZY 2 // New (1.2+)
#define AXIS_ORDER AXIS_ORDER_XZY
// fwd
class cBlockEntity;
class cEntity;
class cClientHandle;
class cBlockEntity;
class cChunkCoords;
using OwnedEntity = std::unique_ptr<cEntity>;
using cEntityList = std::vector<OwnedEntity>;
// tolua_begin
/** The datatype used by blockdata */
typedef unsigned char BLOCKTYPE;
/** The datatype used by nibbledata (meta, light, skylight) */
typedef unsigned char NIBBLETYPE;
/** The type used by the heightmap */
typedef unsigned char HEIGHTTYPE;
// tolua_end
class cChunkCoords
{
public:
int m_ChunkX;
int m_ChunkZ;
cChunkCoords(int a_ChunkX, int a_ChunkZ) : m_ChunkX(a_ChunkX), m_ChunkZ(a_ChunkZ) {}
bool operator == (const cChunkCoords & a_Other) const
{
return ((m_ChunkX == a_Other.m_ChunkX) && (m_ChunkZ == a_Other.m_ChunkZ));
}
bool operator != (const cChunkCoords & a_Other) const
{
return !(operator == (a_Other));
}
/** Simple comparison, to support ordering. */
bool operator < (const cChunkCoords & a_Other) const
{
if (a_Other.m_ChunkX == m_ChunkX)
{
return (m_ChunkZ < a_Other.m_ChunkZ);
}
else
{
return (m_ChunkX < a_Other.m_ChunkX);
}
}
/** Returns a string that describes the chunk coords, suitable for logging. */
AString ToString() const
{
return Printf("[%d, %d]", m_ChunkX, m_ChunkZ);
}
} ;
/** Constants used throughout the code, useful typedefs and utility functions */
class cChunkDef
{
public:
// Chunk dimensions:
static const int Width = 16;
static const int Height = 256;
static const int NumBlocks = Width * Height * Width;
static const int SectionHeight = 16;
static const size_t NumSections = (cChunkDef::Height / SectionHeight);
/** The type used for any heightmap operations and storage; idx = x + Width * z; Height points to the highest non-air block in the column */
typedef HEIGHTTYPE HeightMap[Width * Width];
/** The type used for any biomemap operations and storage inside Cuberite,
using Cuberite biomes (need not correspond to client representation!)
idx = x + Width * z */
typedef EMCSBiome BiomeMap[Width * Width];
/** The type used for block type operations and storage, AXIS_ORDER ordering */
typedef BLOCKTYPE BlockTypes[NumBlocks];
/** The type used for block data in nibble format, AXIS_ORDER ordering */
typedef NIBBLETYPE BlockNibbles[NumBlocks / 2];
/** Converts absolute block coords into relative (chunk + block) coords: */
inline static void AbsoluteToRelative(/* in-out */ int & a_X, int & a_Y, int & a_Z, /* out */ int & a_ChunkX, int & a_ChunkZ)
{
UNUSED(a_Y);
BlockToChunk(a_X, a_Z, a_ChunkX, a_ChunkZ);
a_X = a_X - a_ChunkX * Width;
a_Z = a_Z - a_ChunkZ * Width;
}
/** Converts the specified absolute position into a relative position within its chunk.
Use BlockToChunk to query the chunk coords. */
inline static Vector3i AbsoluteToRelative(Vector3i a_BlockPosition)
{
cChunkCoords chunkPos = BlockToChunk(a_BlockPosition);
return AbsoluteToRelative(a_BlockPosition, chunkPos);
}
/** Converts the absolute coords into coords relative to the specified chunk. */
inline static Vector3i AbsoluteToRelative(Vector3i a_BlockPosition, cChunkCoords a_ChunkPos)
{
return { a_BlockPosition.x - a_ChunkPos.m_ChunkX * Width, a_BlockPosition.y, a_BlockPosition.z - a_ChunkPos.m_ChunkZ * Width };
}
/** Converts relative block coordinates into absolute coordinates with a known chunk location */
inline static Vector3i RelativeToAbsolute(Vector3i a_RelBlockPosition, cChunkCoords a_ChunkCoords)
{
return Vector3i(
a_RelBlockPosition.x + a_ChunkCoords.m_ChunkX * Width,
a_RelBlockPosition.y,
a_RelBlockPosition.z + a_ChunkCoords.m_ChunkZ * Width
);
}
/** Validates a height-coordinate. Returns false if height-coordiante is out of height bounds */
inline static bool IsValidHeight(int a_Height)
{
return ((a_Height >= 0) && (a_Height < Height));
}
inline static bool IsValidHeight(Vector3i a_BlockPosition)
{
return IsValidHeight(a_BlockPosition.y);
}
/** Validates a width-coordinate. Returns false if width-coordiante is out of width bounds */
inline static bool IsValidWidth(int a_Width)
{
return ((a_Width >= 0) && (a_Width < Width));
}
/** Validates a chunk relative coordinate. Returns false if the coordiante is out of bounds for a chunk. */
inline static bool IsValidRelPos(Vector3i a_RelPos)
{
return (
IsValidWidth(a_RelPos.x) &&
IsValidHeight(a_RelPos.y) &&
IsValidWidth(a_RelPos.z)
);
}
/** Converts absolute block coords to chunk coords: */
inline static void BlockToChunk(int a_X, int a_Z, int & a_ChunkX, int & a_ChunkZ)
{
// This version is deprecated in favor of the vector version
// If you're developing new code, use the other version.
const auto ChunkCoords = BlockToChunk({ a_X, 0, a_Z });
a_ChunkX = ChunkCoords.m_ChunkX;
a_ChunkZ = ChunkCoords.m_ChunkZ;
}
/** The Y coordinate of a_Pos is ignored */
inline static cChunkCoords BlockToChunk(const Vector3i a_Position)
{
return { FAST_FLOOR_DIV(a_Position.x, Width), FAST_FLOOR_DIV(a_Position.z, Width) };
}
inline static size_t MakeIndex(int x, int y, int z)
{
ASSERT(IsValidRelPos({ x, y, z }));
#if AXIS_ORDER == AXIS_ORDER_XZY
// For some reason, NOT using the Horner schema is faster. Weird.
return static_cast<size_t>(x + (z * Width) + (y * Width * Width)); // 1.2 uses XZY
#elif AXIS_ORDER == AXIS_ORDER_YZX
return static_cast<size_t>(y + (z * Width) + (x * Height * Width)); // 1.1 uses YZX
#endif
}
inline static size_t MakeIndex(Vector3i a_RelPos)
{
return MakeIndex(a_RelPos.x, a_RelPos.y, a_RelPos.z);
}
inline static Vector3i IndexToCoordinate(size_t index)
{
#if AXIS_ORDER == AXIS_ORDER_XZY
return Vector3i( // 1.2
static_cast<int>(index % cChunkDef::Width), // X
static_cast<int>(index / (cChunkDef::Width * cChunkDef::Width)), // Y
static_cast<int>((index / cChunkDef::Width) % cChunkDef::Width) // Z
);
#elif AXIS_ORDER == AXIS_ORDER_YZX
return Vector3i( // 1.1
static_cast<int>(index / (cChunkDef::Height * cChunkDef::Width)), // X
static_cast<int>(index % cChunkDef::Height), // Y
static_cast<int>((index / cChunkDef::Height) % cChunkDef::Width) // Z
);
#endif
}
inline static void SetBlock(BLOCKTYPE * a_BlockTypes, int a_X, int a_Y, int a_Z, BLOCKTYPE a_Type)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Y >= 0) && (a_Y < Height));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_BlockTypes[MakeIndex(a_X, a_Y, a_Z)] = a_Type;
}
inline static void SetBlock(BLOCKTYPE * a_BlockTypes, int a_Index, BLOCKTYPE a_Type)
{
ASSERT((a_Index >= 0) && (a_Index <= NumBlocks));
a_BlockTypes[a_Index] = a_Type;
}
inline static BLOCKTYPE GetBlock(const BLOCKTYPE * a_BlockTypes, Vector3i a_RelPos)
{
ASSERT(IsValidRelPos(a_RelPos));
return a_BlockTypes[MakeIndex(a_RelPos)];
}
inline static BLOCKTYPE GetBlock(const BLOCKTYPE * a_BlockTypes, int a_X, int a_Y, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Y >= 0) && (a_Y < Height));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_BlockTypes[MakeIndex(a_X, a_Y, a_Z)];
}
inline static BLOCKTYPE GetBlock(const BLOCKTYPE * a_BlockTypes, int a_Idx)
{
ASSERT((a_Idx >= 0) && (a_Idx < NumBlocks));
return a_BlockTypes[a_Idx];
}
inline static HEIGHTTYPE GetHeight(const HeightMap & a_HeightMap, int a_X, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_HeightMap[a_X + Width * a_Z];
}
inline static void SetHeight(HeightMap & a_HeightMap, int a_X, int a_Z, HEIGHTTYPE a_Height)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_HeightMap[a_X + Width * a_Z] = a_Height;
}
inline static EMCSBiome GetBiome(const BiomeMap & a_BiomeMap, int a_X, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_BiomeMap[a_X + Width * a_Z];
}
inline static void SetBiome(BiomeMap & a_BiomeMap, int a_X, int a_Z, EMCSBiome a_Biome)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_BiomeMap[a_X + Width * a_Z] = a_Biome;
}
static NIBBLETYPE GetNibble(const NIBBLETYPE * a_Buffer, int x, int y, int z)
{
if ((x < Width) && (x > -1) && (y < Height) && (y > -1) && (z < Width) && (z > -1))
{
return ExpandNibble(a_Buffer, MakeIndex(x, y, z));
}
ASSERT(!"cChunkDef::GetNibble(): coords out of chunk range!");
return 0;
}
inline static void PackNibble(NIBBLETYPE * const a_Buffer, const size_t a_Index, const NIBBLETYPE a_Nibble)
{
ASSERT((a_Nibble & 0xF) == a_Nibble); // Only the lower bits should be set
a_Buffer[a_Index / 2] = static_cast<NIBBLETYPE>(
(a_Buffer[a_Index / 2] & (0xf0 >> ((a_Index & 1) * 4))) | // The untouched nibble
((a_Nibble & 0x0f) << ((a_Index & 1) * 4)) // The nibble being set
);
}
inline static NIBBLETYPE ExpandNibble(const NIBBLETYPE * const a_Buffer, const size_t a_Index)
{
return (a_Buffer[a_Index / 2] >> ((a_Index & 1) * 4)) & 0x0f;
}
} ;
/** Interface class used for comparing clients of two chunks.
Used primarily for entity moving while both chunks are locked. */
class cClientDiffCallback
{
public:
virtual ~cClientDiffCallback() {}
/** Called for clients that are in Chunk1 and not in Chunk2, */
virtual void Removed(cClientHandle * a_Client) = 0;
/** Called for clients that are in Chunk2 and not in Chunk1. */
virtual void Added(cClientHandle * a_Client) = 0;
} ;
struct sSetBlock
{
int m_RelX, m_RelY, m_RelZ;
int m_ChunkX, m_ChunkZ;
BLOCKTYPE m_BlockType;
NIBBLETYPE m_BlockMeta;
sSetBlock(int a_BlockX, int a_BlockY, int a_BlockZ, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta):
m_RelX(a_BlockX),
m_RelY(a_BlockY),
m_RelZ(a_BlockZ),
m_BlockType(a_BlockType),
m_BlockMeta(a_BlockMeta)
{
cChunkDef::AbsoluteToRelative(m_RelX, m_RelY, m_RelZ, m_ChunkX, m_ChunkZ);
}
sSetBlock(Vector3i a_BlockPos, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta) :
sSetBlock(a_BlockPos.x, a_BlockPos.y, a_BlockPos.z, a_BlockType, a_BlockMeta)
{
}
sSetBlock(int a_ChunkX, int a_ChunkZ, int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta) :
m_RelX(a_RelX), m_RelY(a_RelY), m_RelZ(a_RelZ),
m_ChunkX(a_ChunkX), m_ChunkZ(a_ChunkZ),
m_BlockType(a_BlockType),
m_BlockMeta(a_BlockMeta)
{
ASSERT((a_RelX >= 0) && (a_RelX < cChunkDef::Width));
ASSERT((a_RelZ >= 0) && (a_RelZ < cChunkDef::Width));
}
/** Returns the absolute X coord of the stored block. */
int GetX(void) const { return m_RelX + cChunkDef::Width * m_ChunkX; }
/** Returns the absolute Y coord of the stored block.
Is the same as relative Y coords, because there's no Y relativization. */
int GetY(void) const { return m_RelY; }
/** Returns the absolute Z coord of the stored block. */
int GetZ(void) const { return m_RelZ + cChunkDef::Width * m_ChunkZ; }
/** Returns the absolute coords of the stored block. */
Vector3i GetAbsolutePos() const
{
return Vector3i(GetX(), GetY(), GetZ());
}
/** Returns the relative position of the stored block within its chunk. */
Vector3i GetRelativePos() const
{
return Vector3i(m_RelX, m_RelY, m_RelZ);
}
};
typedef std::vector<sSetBlock> sSetBlockVector;
typedef std::list<cChunkCoords> cChunkCoordsList;
typedef std::vector<cChunkCoords> cChunkCoordsVector;
/** A simple hash function for chunk coords, we assume that chunk coords won't use more than 16 bits, so the hash is almost an identity.
Used for std::unordered_map<cChunkCoords, ...> */
class cChunkCoordsHash
{
public:
size_t operator () (const cChunkCoords & a_Coords) const
{
return (static_cast<size_t>(a_Coords.m_ChunkX) << 16) ^ static_cast<size_t>(a_Coords.m_ChunkZ);
}
};
/** Interface class used as a callback for operations that involve chunk coords */
class cChunkCoordCallback
{
public:
virtual ~cChunkCoordCallback() {}
/** Called with the chunk's coords, and an optional operation status flag for operations that support it. */
virtual void Call(cChunkCoords a_Coords, bool a_IsSuccess) = 0;
} ;
/** Generic template that can store any kind of data together with a triplet of 3 coords */
template <typename X> class cCoordWithData
{
public:
int x;
int y;
int z;
X Data;
cCoordWithData(int a_X, int a_Y, int a_Z) :
x(a_X), y(a_Y), z(a_Z), Data()
{
}
cCoordWithData(int a_X, int a_Y, int a_Z, const X & a_Data) :
x(a_X), y(a_Y), z(a_Z), Data(a_Data)
{
}
} ;
typedef cCoordWithData<int> cCoordWithInt;
typedef std::list<cCoordWithInt> cCoordWithIntList;
typedef std::vector<cCoordWithInt> cCoordWithIntVector;