summaryrefslogblamecommitdiffstats
path: root/g4f/Provider/Blackbox.py
blob: 3e18307666e44ea77ce594798bd6eb63a5612242 (plain) (tree)
1
2
3
4
5
6
7
8
9

                                  
         

             
                                 
 
                                                     
                                              
                                                                     
 
                                                           
                                   
                                                     
                  



                                   
                              
              

                           


                         



                                 
     











                                                                                                             
 
                         
                       


                                                               
                                                                 





                                                 

     



                                          

                                            




                                           




                                     


                                
                


                                    
                   













                                                                                                                                 
         




                                                                             
        
                                                             




                                                     
            

                                                                                          

                                     
                                

                                     
                                      
                                
                                        
                                          
                                   


                                             
                                     
                                    



                                               

                                       
             
 





                                                                        

                                                                                          
                                           








                                                                                                      
                                                                   

                                                          
                                                                                           
                                                     
                                                   
from __future__ import annotations

import re
import random
import string
from aiohttp import ClientSession

from ..typing import AsyncResult, Messages, ImageType
from ..image import ImageResponse, to_data_uri
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin

class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    
    default_model = 'blackbox'
    models = [
        'blackbox',
        'gemini-1.5-flash',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'ImageGenerationLV45LJp',
        'GPT-4o',
        'Gemini-PRO',
        'Claude-Sonnet-3.5',
    ]
    
    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "flux": "ImageGenerationLV45LJp",
        "gpt-4o": "GPT-4o",
        "gemini-pro": "Gemini-PRO",
        "claude-3.5-sonnet": "Claude-Sonnet-3.5",
    }

    agentMode = {
        'ImageGenerationLV45LJp': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
    }

    trendingAgentMode = {
        "blackbox": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
    }
    
    userSelectedModel = {
        "GPT-4o": "GPT-4o",
        "Gemini-PRO": "Gemini-PRO",
        'Claude-Sonnet-3.5': "Claude-Sonnet-3.5",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        image: ImageType = None,
        image_name: str = None,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "referer": f"{cls.url}/",
            "sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
        }

        if model in cls.userSelectedModel:
            prefix = f"@{cls.userSelectedModel[model]}"
            if not messages[0]['content'].startswith(prefix):
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        async with ClientSession(headers=headers) as session:
            if image is not None:
                messages[-1]["data"] = {
                    "fileText": image_name,
                    "imageBase64": to_data_uri(image)
                }
            
            random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))

            data = {
                "messages": messages,
                "id": random_id,
                "previewToken": None,
                "userId": None,
                "codeModelMode": True,
                "agentMode": {},
                "trendingAgentMode": {},
                "userSelectedModel": None,
                "isMicMode": False,
                "maxTokens": 99999999,
                "playgroundTopP": 0.9,
                "playgroundTemperature": 0.5,
                "isChromeExt": False,
                "githubToken": None,
                "clickedAnswer2": False,
                "clickedAnswer3": False,
                "clickedForceWebSearch": False,
                "visitFromDelta": False,
                "mobileClient": False,
                "webSearchMode": False,
            }

            if model in cls.agentMode:
                data["agentMode"] = cls.agentMode[model]
            elif model in cls.trendingAgentMode:
                data["trendingAgentMode"] = cls.trendingAgentMode[model]
            elif model in cls.userSelectedModel:
                data["userSelectedModel"] = cls.userSelectedModel[model]
            
            async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                response.raise_for_status()
                if model == 'ImageGenerationLV45LJp':
                    response_text = await response.text()
                    url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                    if url_match:
                        image_url = url_match.group(0)
                        yield ImageResponse(image_url, alt=messages[-1]['content'])
                    else:
                        raise Exception("Image URL not found in the response")
                else:
                    async for chunk in response.content.iter_any():
                        if chunk:
                            decoded_chunk = chunk.decode()
                            decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                            if decoded_chunk.strip():
                                yield decoded_chunk