from __future__ import annotations import json import asyncio from aiohttp import ClientSession, ContentTypeError from ..typing import AsyncResult, Messages from .base_provider import AsyncGeneratorProvider, ProviderModelMixin from .helper import format_prompt from ..image import ImageResponse class ReplicateHome(AsyncGeneratorProvider, ProviderModelMixin): url = "https://replicate.com" api_endpoint = "https://homepage.replicate.com/api/prediction" working = True supports_stream = True supports_system_message = True supports_message_history = True default_model = 'meta/meta-llama-3-70b-instruct' text_models = [ 'meta/meta-llama-3-70b-instruct', 'mistralai/mixtral-8x7b-instruct-v0.1', 'google-deepmind/gemma-2b-it', 'yorickvp/llava-13b', ] image_models = [ 'black-forest-labs/flux-schnell', 'stability-ai/stable-diffusion-3', 'bytedance/sdxl-lightning-4step', 'playgroundai/playground-v2.5-1024px-aesthetic', ] models = text_models + image_models model_aliases = { "flux-schnell": "black-forest-labs/flux-schnell", "sd-3": "stability-ai/stable-diffusion-3", "sdxl": "bytedance/sdxl-lightning-4step", "playground-v2.5": "playgroundai/playground-v2.5-1024px-aesthetic", "llama-3-70b": "meta/meta-llama-3-70b-instruct", "mixtral-8x7b": "mistralai/mixtral-8x7b-instruct-v0.1", "gemma-2b": "google-deepmind/gemma-2b-it", "llava-13b": "yorickvp/llava-13b", } model_versions = { "meta/meta-llama-3-70b-instruct": "fbfb20b472b2f3bdd101412a9f70a0ed4fc0ced78a77ff00970ee7a2383c575d", "mistralai/mixtral-8x7b-instruct-v0.1": "5d78bcd7a992c4b793465bcdcf551dc2ab9668d12bb7aa714557a21c1e77041c", "google-deepmind/gemma-2b-it": "dff94eaf770e1fc211e425a50b51baa8e4cac6c39ef074681f9e39d778773626", "yorickvp/llava-13b": "80537f9eead1a5bfa72d5ac6ea6414379be41d4d4f6679fd776e9535d1eb58bb", 'black-forest-labs/flux-schnell': "f2ab8a5bfe79f02f0789a146cf5e73d2a4ff2684a98c2b303d1e1ff3814271db", 'stability-ai/stable-diffusion-3': "527d2a6296facb8e47ba1eaf17f142c240c19a30894f437feee9b91cc29d8e4f", 'bytedance/sdxl-lightning-4step': "5f24084160c9089501c1b3545d9be3c27883ae2239b6f412990e82d4a6210f8f", 'playgroundai/playground-v2.5-1024px-aesthetic': "a45f82a1382bed5c7aeb861dac7c7d191b0fdf74d8d57c4a0e6ed7d4d0bf7d24", } @classmethod def get_model(cls, model: str) -> str: if model in cls.models: return model elif model in cls.model_aliases: return cls.model_aliases[model] else: return cls.default_model @classmethod async def create_async_generator( cls, model: str, messages: Messages, proxy: str = None, **kwargs ) -> AsyncResult: model = cls.get_model(model) headers = { "accept": "*/*", "accept-language": "en-US,en;q=0.9", "cache-control": "no-cache", "content-type": "application/json", "origin": "https://replicate.com", "pragma": "no-cache", "priority": "u=1, i", "referer": "https://replicate.com/", "sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"', "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": '"Linux"', "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36" } async with ClientSession(headers=headers) as session: if model in cls.image_models: prompt = messages[-1]['content'] if messages else "" else: prompt = format_prompt(messages) data = { "model": model, "version": cls.model_versions[model], "input": {"prompt": prompt}, } async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response: response.raise_for_status() result = await response.json() prediction_id = result['id'] poll_url = f"https://homepage.replicate.com/api/poll?id={prediction_id}" max_attempts = 30 delay = 5 for _ in range(max_attempts): async with session.get(poll_url, proxy=proxy) as response: response.raise_for_status() try: result = await response.json() except ContentTypeError: text = await response.text() try: result = json.loads(text) except json.JSONDecodeError: raise ValueError(f"Unexpected response format: {text}") if result['status'] == 'succeeded': if model in cls.image_models: image_url = result['output'][0] yield ImageResponse(image_url, "Generated image") return else: for chunk in result['output']: yield chunk break elif result['status'] == 'failed': raise Exception(f"Prediction failed: {result.get('error')}") await asyncio.sleep(delay) if result['status'] != 'succeeded': raise Exception("Prediction timed out")