summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/Airforce.py
blob: e2b4be212fd21f0009c3e4037989ba82ba80e3bd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from __future__ import annotations
import random
import json
from aiohttp import ClientSession
from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse

def split_long_message(message: str, max_length: int = 4000) -> list[str]:
    return [message[i:i+max_length] for i in range(0, len(message), max_length)]

class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://api.airforce"
    image_api_endpoint = "https://api.airforce/imagine2"
    text_api_endpoint = "https://api.airforce/chat/completions"
    working = True
    
    default_model = 'llama-3-70b-chat'
    
    supports_gpt_35_turbo = True
    supports_gpt_4 = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    
    text_models = [
        # anthorpic
        'claude-3-haiku-20240307', 
        'claude-3-sonnet-20240229', 
        'claude-3-5-sonnet-20240620', 
        'claude-3-opus-20240229', 
        
        # openai
        'chatgpt-4o-latest', 
        'gpt-4', 
        #'gpt-4-0613', 
        'gpt-4-turbo', 
        'gpt-4o-mini-2024-07-18', 
        'gpt-4o-mini', 
        'gpt-3.5-turbo', 
        'gpt-3.5-turbo-0125', 
        'gpt-3.5-turbo-1106', 
        #'gpt-3.5-turbo-16k', # No response from the API.
        #'gpt-3.5-turbo-0613', # No response from the API.
        #'gpt-3.5-turbo-16k-0613', # No response from the API.
        'gpt-4o', 
        #'o1-mini', # No response from the API.
        
        # meta-llama
        'llama-3-70b-chat', 
        'llama-3-70b-chat-turbo', 
        'llama-3-8b-chat', 
        'llama-3-8b-chat-turbo', 
        'llama-3-70b-chat-lite', 
        'llama-3-8b-chat-lite', 
        #'llama-2-70b-chat', # Failed to load response after multiple retries.
        'llama-2-13b-chat', 
        #'llama-2-7b-chat', # Failed to load response after multiple retries.
        'llama-3.1-405b-turbo', 
        'llama-3.1-70b-turbo', 
        'llama-3.1-8b-turbo', 
        'LlamaGuard-2-8b', 
        'Llama-Guard-7b', 
        'Llama-3.2-90B-Vision-Instruct-Turbo',
        
        # codellama
        #'CodeLlama-7b-Python-hf', # Failed to load response after multiple retries.
        #'CodeLlama-7b-Python', 
        #'CodeLlama-13b-Python-hf', # Failed to load response after multiple retries.
        #'CodeLlama-34b-Python-hf', # Failed to load response after multiple retries.
        #'CodeLlama-70b-Python-hf', # Failed to load response after multiple retries.
        
        # 01-ai
        #'Yi-34B-Chat', # Failed to load response after multiple retries.
        #'Yi-34B', # Failed to load response after multiple retries.
        #'Yi-6B', # Failed to load response after multiple retries.
        
        # mistral-ai
        #'Mixtral-8x7B-v0.1', 
        #'Mixtral-8x22B', # Failed to load response after multiple retries.
        'Mixtral-8x7B-Instruct-v0.1', 
        'Mixtral-8x22B-Instruct-v0.1', 
        'Mistral-7B-Instruct-v0.1', 
        'Mistral-7B-Instruct-v0.2', 
        'Mistral-7B-Instruct-v0.3', 
        
        # openchat
        #'openchat-3.5', # Failed to load response after multiple retries.
        
        # wizardlm
        #'WizardLM-13B-V1.2', # Failed to load response after multiple retries.
        #'WizardCoder-Python-34B-V1.0', # Failed to load response after multiple retries.
        
        # qwen
        #'Qwen1.5-0.5B-Chat', # Failed to load response after multiple retries.
        #'Qwen1.5-1.8B-Chat', # Failed to load response after multiple retries.
        #'Qwen1.5-4B-Chat', # Failed to load response after multiple retries.
        'Qwen1.5-7B-Chat', 
        'Qwen1.5-14B-Chat', 
        'Qwen1.5-72B-Chat', 
        'Qwen1.5-110B-Chat', 
        'Qwen2-72B-Instruct', 
        
        # google
        'gemma-2b-it', 
        #'gemma-7b-it', # Failed to load response after multiple retries.
        #'gemma-2b', # Failed to load response after multiple retries.
        #'gemma-7b', # Failed to load response after multiple retries.
        'gemma-2-9b-it', # fix bug
        'gemma-2-27b-it', 
        
        # gemini
        'gemini-1.5-flash', 
        'gemini-1.5-pro', 
        
        # databricks
        'dbrx-instruct', 
        
        # lmsys
        #'vicuna-7b-v1.5', # Failed to load response after multiple retries.
        #'vicuna-13b-v1.5', # Failed to load response after multiple retries.
        
        # cognitivecomputations
        #'dolphin-2.5-mixtral-8x7b', # Failed to load response after multiple retries.
        
        # deepseek-ai
        #'deepseek-coder-33b-instruct', # No response from the API.
        #'deepseek-coder-67b-instruct', # Failed to load response after multiple retries.
        'deepseek-llm-67b-chat', 
        
        # NousResearch
        #'Nous-Capybara-7B-V1p9', # Failed to load response after multiple retries.
        'Nous-Hermes-2-Mixtral-8x7B-DPO', 
        #'Nous-Hermes-2-Mixtral-8x7B-SFT', # Failed to load response after multiple retries.
        #'Nous-Hermes-llama-2-7b', # Failed to load response after multiple retries.
        #'Nous-Hermes-Llama2-13b', # Failed to load response after multiple retries.
        'Nous-Hermes-2-Yi-34B', 
        
        # Open-Orca
        #'Mistral-7B-OpenOrca', # Failed to load response after multiple retries.
        
        # togethercomputer
        #'alpaca-7b', # Failed to load response after multiple retries.
        
        # teknium
        #'OpenHermes-2-Mistral-7B', # Failed to load response after multiple retries.
        #'OpenHermes-2.5-Mistral-7B', # Failed to load response after multiple retries.
        
        # microsoft
        'WizardLM-2-8x22B', 
        
        # Nexusflow
        #'NexusRaven-V2-13B', # Failed to load response after multiple retries.
        
        # Phind
        #'Phind-CodeLlama-34B-v2', # Failed to load response after multiple retries.
        
        # Snoflake
        #'snowflake-arctic-instruct', # No response from the API.
        
        # upstage
        'SOLAR-10.7B-Instruct-v1.0', 
        
        # togethercomputer
        #'StripedHyena-Hessian-7B', # Failed to load response after multiple retries.
        #'StripedHyena-Nous-7B', # Failed to load response after multiple retries.
        #'Llama-2-7B-32K-Instruct', # Failed to load response after multiple retries.
        #'CodeLlama-13b-Instruct', # No response from the API.
        #'evo-1-131k-base', # Failed to load response after multiple retries.
        #'OLMo-7B-Instruct', # Failed to load response after multiple retries.
        
        # garage-bAInd
        #'Platypus2-70B-instruct', # Failed to load response after multiple retries.
        
        # snorkelai
        #'Snorkel-Mistral-PairRM-DPO', # Failed to load response after multiple retries.
        
        # Undi95
        #'ReMM-SLERP-L2-13B', # Failed to load response after multiple retries.
        
        # Gryphe
        'MythoMax-L2-13b', 
        
        # Autism
        #'chronos-hermes-13b', # Failed to load response after multiple retries.
        
        # Undi95
        #'Toppy-M-7B', # Failed to load response after multiple retries.
        
        # iFlytek
        #'sparkdesk', # Failed to load response after multiple retries.
        
        # pawan
        'cosmosrp', 
        
    ]
    image_models = [
        'flux',
        'flux-realism',
        'flux-anime',
        'flux-3d',
        'flux-disney',
        'flux-pixel',
        'flux-4o',
        'any-dark',
        'dall-e-3',
    ]
    
    models = [
        *text_models,
        *image_models,
    ]
    model_aliases = {
        # anthorpic
        "claude-3-haiku": "claude-3-haiku-20240307",
        "claude-3-sonnet": "claude-3-sonnet-20240229",
        "claude-3-5-sonnet": "claude-3-5-sonnet-20240620",
        "claude-3-opus": "claude-3-opus-20240229",
        
        # openai
        "gpt-4o": "chatgpt-4o-latest",
        "gpt-4o-mini": "gpt-4o-mini-2024-07-18",
        "gpt-3.5-turbo": "gpt-3.5-turbo-0125",
        "gpt-3.5-turbo": "gpt-3.5-turbo-1106",
        
        # meta-llama
        "llama-3-70b": "llama-3-70b-chat",
        "llama-3-70b": "llama-3-70b-chat-turbo",
        "llama-3-8b": "llama-3-8b-chat",
        "llama-3-8b": "llama-3-8b-chat-turbo",
        "llama-3-70b": "llama-3-70b-chat-lite",
        "llama-3-8b": "llama-3-8b-chat-lite",
        "llama-2-13b": "llama-2-13b-chat",
        "llama-3.1-405b": "llama-3.1-405b-turbo",
        "llama-3.1-70b": "llama-3.1-70b-turbo",
        "llama-3.1-8b": "llama-3.1-8b-turbo",
        "llamaguard-2-8b": "LlamaGuard-2-8b",
        "llamaguard-7b": "Llama-Guard-7b",
        "llama-3.2-90b": "Llama-3.2-90B-Vision-Instruct-Turbo",
        
        # mistral-ai
        "mixtral-8x7b": "Mixtral-8x7B-Instruct-v0.1",
        "mixtral-8x22b": "Mixtral-8x22B-Instruct-v0.1",
        "mistral-7b": "Mistral-7B-Instruct-v0.1",
        "mistral-7b": "Mistral-7B-Instruct-v0.2",
        "mistral-7b": "Mistral-7B-Instruct-v0.3",
        
        # qwen
        "qwen-1.5-7b": "Qwen1.5-7B-Chat",
        "qwen-1.5-14b": "Qwen1.5-14B-Chat",
        "qwen-1.5-72b": "Qwen1.5-72B-Chat",
        "qwen-1.5-110b": "Qwen1.5-110B-Chat",
        "qwen-2-72b": "Qwen2-72B-Instruct",
        
        # google
        "gemma-2b": "gemma-2b-it",
        "gemma-2-9b": "gemma-2-9b-it",
        "gemma-2-27b": "gemma-2-27b-it",
        
        # gemini
        "gemini-flash": "gemini-1.5-flash",
        "gemini-pro": "gemini-1.5-pro",
        
        # deepseek-ai
        "deepseek": "deepseek-llm-67b-chat",
        
        # NousResearch
        "mixtral-8x7b-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
        "yi-34b": "Nous-Hermes-2-Yi-34B",
        
        # microsoft
        "wizardlm-2-8x22b": "WizardLM-2-8x22B",
        
        # upstage
        "solar-10.7b": "SOLAR-10.7B-Instruct-v1.0",
        
        # Gryphe
        "mythomax-l2-13b": "MythoMax-L2-13b",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases.get(model, cls.default_model)
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        seed: int = None,
        size: str = "1:1",
        stream: bool = False,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)

        # If the model is an image model, use the image API
        if model in cls.image_models:
            async for result in cls._generate_image(model, messages, proxy, seed, size):
                yield result
        # If the model is a text model, use the text API
        elif model in cls.text_models:
            async for result in cls._generate_text(model, messages, proxy, stream):
                yield result
    
    @classmethod
    async def _generate_image(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        seed: int = None,
        size: str = "1:1",
        **kwargs
    ) -> AsyncResult:
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "origin": "https://llmplayground.net",
            "user-agent": "Mozilla/5.0"
        }

        if seed is None:
            seed = random.randint(0, 100000)

        # Assume the first message is the prompt for the image
        prompt = messages[0]['content']

        async with ClientSession(headers=headers) as session:
            params = {
                "model": model,
                "prompt": prompt,
                "size": size,
                "seed": seed
            }
            async with session.get(f"{cls.image_api_endpoint}", params=params, proxy=proxy) as response:
                response.raise_for_status()
                content_type = response.headers.get('Content-Type', '').lower()

                if 'application/json' in content_type:
                    async for chunk in response.content.iter_chunked(1024):
                        if chunk:
                            yield chunk.decode('utf-8')
                elif 'image' in content_type:
                    image_data = b""
                    async for chunk in response.content.iter_chunked(1024):
                        if chunk:
                            image_data += chunk
                    image_url = f"{cls.image_api_endpoint}?model={model}&prompt={prompt}&size={size}&seed={seed}"
                    alt_text = f"Generated image for prompt: {prompt}"
                    yield ImageResponse(images=image_url, alt=alt_text)

    @classmethod
    async def _generate_text(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        stream: bool = False,
        **kwargs
    ) -> AsyncResult:
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "authorization": "Bearer missing api key",
            "content-type": "application/json",
            "user-agent": "Mozilla/5.0"
        }

        async with ClientSession(headers=headers) as session:
            formatted_prompt = cls._format_messages(messages)
            prompt_parts = split_long_message(formatted_prompt)
            full_response = ""

            for part in prompt_parts:
                data = {
                    "messages": [{"role": "user", "content": part}],
                    "model": model,
                    "max_tokens": 4096,
                    "temperature": 1,
                    "top_p": 1,
                    "stream": stream
                }
                async with session.post(cls.text_api_endpoint, json=data, proxy=proxy) as response:
                    response.raise_for_status()
                    part_response = ""
                    if stream:
                        async for line in response.content:
                            if line:
                                line = line.decode('utf-8').strip()
                                if line.startswith("data: ") and line != "data: [DONE]":
                                    json_data = json.loads(line[6:])
                                    content = json_data['choices'][0]['delta'].get('content', '')
                                    part_response += content
                    else:
                        json_data = await response.json()
                        content = json_data['choices'][0]['message']['content']
                        part_response = content

                    full_response += part_response
            yield full_response

    @classmethod
    def _format_messages(cls, messages: Messages) -> str:
        """Formats messages for text generation."""
        return " ".join([msg['content'] for msg in messages])