1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
from __future__ import annotations
from aiohttp import ClientSession, ClientResponseError
from urllib.parse import urlencode
import json
import io
import asyncio
from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse, is_accepted_format
from .helper import format_prompt
class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://api.airforce"
text_api_endpoint = "https://api.airforce/chat/completions"
image_api_endpoint = "https://api.airforce/v1/imagine2"
working = True
supports_gpt_35_turbo = True
supports_gpt_4 = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'llama-3-70b-chat'
text_models = [
# Open source models
'llama-2-13b-chat',
'llama-3-70b-chat',
'llama-3-70b-chat-turbo',
'llama-3-70b-chat-lite',
'llama-3-8b-chat',
'llama-3-8b-chat-turbo',
'llama-3-8b-chat-lite',
'llama-3.1-405b-turbo',
'llama-3.1-70b-turbo',
'llama-3.1-8b-turbo',
'LlamaGuard-2-8b',
'Llama-Guard-7b',
'Meta-Llama-Guard-3-8B',
'Mixtral-8x7B-Instruct-v0.1',
'Mixtral-8x22B-Instruct-v0.1',
'Mistral-7B-Instruct-v0.1',
'Mistral-7B-Instruct-v0.2',
'Mistral-7B-Instruct-v0.3',
'Qwen1.5-72B-Chat',
'Qwen1.5-110B-Chat',
'Qwen2-72B-Instruct',
'gemma-2b-it',
'gemma-2-9b-it',
'gemma-2-27b-it',
'dbrx-instruct',
'deepseek-llm-67b-chat',
'Nous-Hermes-2-Mixtral-8x7B-DPO',
'Nous-Hermes-2-Yi-34B',
'WizardLM-2-8x22B',
'SOLAR-10.7B-Instruct-v1.0',
'StripedHyena-Nous-7B',
'sparkdesk',
# Other models
'chatgpt-4o-latest',
'gpt-4',
'gpt-4-turbo',
'gpt-4o-mini-2024-07-18',
'gpt-4o-mini',
'gpt-4o',
'gpt-3.5-turbo',
'gpt-3.5-turbo-0125',
'gpt-3.5-turbo-1106',
'gpt-3.5-turbo-16k',
'gpt-3.5-turbo-0613',
'gpt-3.5-turbo-16k-0613',
'gemini-1.5-flash',
'gemini-1.5-pro',
]
image_models = [
'flux',
'flux-realism',
'flux-anime',
'flux-3d',
'flux-disney',
'flux-pixel',
'any-dark',
]
models = [
*text_models,
*image_models
]
model_aliases = {
# Open source models
"llama-2-13b": "llama-2-13b-chat",
"llama-3-70b": "llama-3-70b-chat",
"llama-3-70b": "llama-3-70b-chat-turbo",
"llama-3-70b": "llama-3-70b-chat-lite",
"llama-3-8b": "llama-3-8b-chat",
"llama-3-8b": "llama-3-8b-chat-turbo",
"llama-3-8b": "llama-3-8b-chat-lite",
"llama-3.1-405b": "llama-3.1-405b-turbo",
"llama-3.1-70b": "llama-3.1-70b-turbo",
"llama-3.1-8b": "llama-3.1-8b-turbo",
"mixtral-8x7b": "Mixtral-8x7B-Instruct-v0.1",
"mixtral-8x22b": "Mixtral-8x22B-Instruct-v0.1",
"mistral-7b": "Mistral-7B-Instruct-v0.1",
"mistral-7b": "Mistral-7B-Instruct-v0.2",
"mistral-7b": "Mistral-7B-Instruct-v0.3",
"mixtral-8x7b-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
"qwen-1-5-72b": "Qwen1.5-72B-Chat",
"qwen-1_5-110b": "Qwen1.5-110B-Chat",
"qwen-2-72b": "Qwen2-72B-Instruct",
"gemma-2b": "gemma-2b-it",
"gemma-2b-9b": "gemma-2-9b-it",
"gemma-2b-27b": "gemma-2-27b-it",
"deepseek": "deepseek-llm-67b-chat",
"yi-34b": "Nous-Hermes-2-Yi-34B",
"wizardlm-2-8x22b": "WizardLM-2-8x22B",
"solar-10-7b": "SOLAR-10.7B-Instruct-v1.0",
"sh-n-7b": "StripedHyena-Nous-7B",
"sparkdesk-v1.1": "sparkdesk",
# Other models
"gpt-4o": "chatgpt-4o-latest",
"gpt-4o-mini": "gpt-4o-mini-2024-07-18",
"gpt-3.5-turbo": "gpt-3.5-turbo-0125",
"gpt-3.5-turbo": "gpt-3.5-turbo-1106",
"gpt-3.5-turbo": "gpt-3.5-turbo-16k",
"gpt-3.5-turbo": "gpt-3.5-turbo-0613",
"gpt-3.5-turbo": "gpt-3.5-turbo-16k-0613",
"gemini-flash": "gemini-1.5-flash",
"gemini-pro": "gemini-1.5-pro",
}
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"content-type": "application/json",
"origin": "https://api.airforce",
"sec-ch-ua": '"Chromium";v="128", "Not(A:Brand";v="24"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
}
if model in cls.image_models:
async for item in cls.generate_image(model, messages, headers, proxy, **kwargs):
yield item
else:
async for item in cls.generate_text(model, messages, headers, proxy, **kwargs):
yield item
@classmethod
async def generate_text(cls, model: str, messages: Messages, headers: dict, proxy: str, **kwargs) -> AsyncResult:
async with ClientSession(headers=headers) as session:
data = {
"messages": [{"role": "user", "content": format_prompt(messages)}],
"model": model,
"temperature": kwargs.get('temperature', 1),
"top_p": kwargs.get('top_p', 1),
"stream": True
}
async with session.post(cls.text_api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
async for line in response.content:
if line:
line = line.decode('utf-8').strip()
if line.startswith("data: "):
try:
data = json.loads(line[6:])
if 'choices' in data and len(data['choices']) > 0:
delta = data['choices'][0].get('delta', {})
if 'content' in delta:
yield delta['content']
except json.JSONDecodeError:
continue
elif line == "data: [DONE]":
break
@classmethod
async def generate_image(cls, model: str, messages: Messages, headers: dict, proxy: str, **kwargs) -> AsyncResult:
prompt = messages[-1]['content'] if messages else ""
params = {
"prompt": prompt,
"size": kwargs.get("size", "1:1"),
"seed": kwargs.get("seed"),
"model": model
}
params = {k: v for k, v in params.items() if v is not None}
try:
async with ClientSession(headers=headers) as session:
async with session.get(cls.image_api_endpoint, params=params, proxy=proxy) as response:
response.raise_for_status()
content = await response.read()
if response.content_type.startswith('image/'):
image_url = str(response.url)
yield ImageResponse(image_url, prompt)
else:
try:
text = content.decode('utf-8', errors='ignore')
yield f"Error: {text}"
except Exception as decode_error:
yield f"Error: Unable to decode response - {str(decode_error)}"
except ClientResponseError as e:
yield f"Error: HTTP {e.status}: {e.message}"
except Exception as e:
yield f"Unexpected error: {str(e)}"
|