summaryrefslogtreecommitdiffstats
path: root/src/common/vector_math.h
diff options
context:
space:
mode:
authorEmmanuel Gil Peyrot <linkmauve@linkmauve.fr>2016-09-18 02:38:01 +0200
committerEmmanuel Gil Peyrot <linkmauve@linkmauve.fr>2016-09-18 02:38:01 +0200
commitdc8479928c5aee4c6ad6fe4f59006fb604cee701 (patch)
tree569a7f13128450bbab973236615587ff00bced5f /src/common/vector_math.h
parentTravis: Import Dolphin’s clang-format hook. (diff)
downloadyuzu-dc8479928c5aee4c6ad6fe4f59006fb604cee701.tar
yuzu-dc8479928c5aee4c6ad6fe4f59006fb604cee701.tar.gz
yuzu-dc8479928c5aee4c6ad6fe4f59006fb604cee701.tar.bz2
yuzu-dc8479928c5aee4c6ad6fe4f59006fb604cee701.tar.lz
yuzu-dc8479928c5aee4c6ad6fe4f59006fb604cee701.tar.xz
yuzu-dc8479928c5aee4c6ad6fe4f59006fb604cee701.tar.zst
yuzu-dc8479928c5aee4c6ad6fe4f59006fb604cee701.zip
Diffstat (limited to '')
-rw-r--r--src/common/vector_math.h707
1 files changed, 382 insertions, 325 deletions
diff --git a/src/common/vector_math.h b/src/common/vector_math.h
index cfb9481b6..b2d630829 100644
--- a/src/common/vector_math.h
+++ b/src/common/vector_math.h
@@ -1,7 +1,6 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
-
// Copyright 2014 Tony Wasserka
// All rights reserved.
//
@@ -36,158 +35,178 @@
namespace Math {
-template<typename T> class Vec2;
-template<typename T> class Vec3;
-template<typename T> class Vec4;
+template <typename T>
+class Vec2;
+template <typename T>
+class Vec3;
+template <typename T>
+class Vec4;
-template<typename T>
+template <typename T>
static inline Vec2<T> MakeVec(const T& x, const T& y);
-template<typename T>
+template <typename T>
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z);
-template<typename T>
+template <typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w);
-
-template<typename T>
+template <typename T>
class Vec2 {
public:
T x;
T y;
- T* AsArray() { return &x; }
+ T* AsArray() {
+ return &x;
+ }
Vec2() = default;
- Vec2(const T a[2]) : x(a[0]), y(a[1]) {}
- Vec2(const T& _x, const T& _y) : x(_x), y(_y) {}
+ Vec2(const T a[2]) : x(a[0]), y(a[1]) {
+ }
+ Vec2(const T& _x, const T& _y) : x(_x), y(_y) {
+ }
- template<typename T2>
+ template <typename T2>
Vec2<T2> Cast() const {
return Vec2<T2>((T2)x, (T2)y);
}
- static Vec2 AssignToAll(const T& f)
- {
+ static Vec2 AssignToAll(const T& f) {
return Vec2<T>(f, f);
}
- void Write(T a[2])
- {
- a[0] = x; a[1] = y;
+ void Write(T a[2]) {
+ a[0] = x;
+ a[1] = y;
}
- Vec2<decltype(T{}+T{})> operator +(const Vec2& other) const
- {
- return MakeVec(x+other.x, y+other.y);
+ Vec2<decltype(T{} + T{})> operator+(const Vec2& other) const {
+ return MakeVec(x + other.x, y + other.y);
}
- void operator += (const Vec2 &other)
- {
- x+=other.x; y+=other.y;
+ void operator+=(const Vec2& other) {
+ x += other.x;
+ y += other.y;
}
- Vec2<decltype(T{}-T{})> operator -(const Vec2& other) const
- {
- return MakeVec(x-other.x, y-other.y);
+ Vec2<decltype(T{} - T{})> operator-(const Vec2& other) const {
+ return MakeVec(x - other.x, y - other.y);
}
- void operator -= (const Vec2& other)
- {
- x-=other.x; y-=other.y;
+ void operator-=(const Vec2& other) {
+ x -= other.x;
+ y -= other.y;
}
- template<typename Q = T,class = typename std::enable_if<std::is_signed<Q>::value>::type>
- Vec2<decltype(-T{})> operator -() const
- {
- return MakeVec(-x,-y);
+ template <typename Q = T, class = typename std::enable_if<std::is_signed<Q>::value>::type>
+ Vec2<decltype(-T{})> operator-() const {
+ return MakeVec(-x, -y);
}
- Vec2<decltype(T{}*T{})> operator * (const Vec2& other) const
- {
- return MakeVec(x*other.x, y*other.y);
+ Vec2<decltype(T{} * T{})> operator*(const Vec2& other) const {
+ return MakeVec(x * other.x, y * other.y);
}
- template<typename V>
- Vec2<decltype(T{}*V{})> operator * (const V& f) const
- {
- return MakeVec(x*f,y*f);
+ template <typename V>
+ Vec2<decltype(T{} * V{})> operator*(const V& f) const {
+ return MakeVec(x * f, y * f);
}
- template<typename V>
- void operator *= (const V& f)
- {
- x*=f; y*=f;
+ template <typename V>
+ void operator*=(const V& f) {
+ x *= f;
+ y *= f;
}
- template<typename V>
- Vec2<decltype(T{}/V{})> operator / (const V& f) const
- {
- return MakeVec(x/f,y/f);
+ template <typename V>
+ Vec2<decltype(T{} / V{})> operator/(const V& f) const {
+ return MakeVec(x / f, y / f);
}
- template<typename V>
- void operator /= (const V& f)
- {
+ template <typename V>
+ void operator/=(const V& f) {
*this = *this / f;
}
- T Length2() const
- {
- return x*x + y*y;
+ T Length2() const {
+ return x * x + y * y;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec2 WithLength(const float l) const;
- float Distance2To(Vec2 &other);
+ float Distance2To(Vec2& other);
Vec2 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
- T& operator [] (int i) //allow vector[1] = 3 (vector.y=3)
+ T& operator[](int i) // allow vector[1] = 3 (vector.y=3)
{
return *((&x) + i);
}
- T operator [] (const int i) const
- {
+ T operator[](const int i) const {
return *((&x) + i);
}
- void SetZero()
- {
- x=0; y=0;
+ void SetZero() {
+ x = 0;
+ y = 0;
}
// Common aliases: UV (texel coordinates), ST (texture coordinates)
- T& u() { return x; }
- T& v() { return y; }
- T& s() { return x; }
- T& t() { return y; }
+ T& u() {
+ return x;
+ }
+ T& v() {
+ return y;
+ }
+ T& s() {
+ return x;
+ }
+ T& t() {
+ return y;
+ }
- const T& u() const { return x; }
- const T& v() const { return y; }
- const T& s() const { return x; }
- const T& t() const { return y; }
+ const T& u() const {
+ return x;
+ }
+ const T& v() const {
+ return y;
+ }
+ const T& s() const {
+ return x;
+ }
+ const T& t() const {
+ return y;
+ }
// swizzlers - create a subvector of specific components
- const Vec2 yx() const { return Vec2(y, x); }
- const Vec2 vu() const { return Vec2(y, x); }
- const Vec2 ts() const { return Vec2(y, x); }
+ const Vec2 yx() const {
+ return Vec2(y, x);
+ }
+ const Vec2 vu() const {
+ return Vec2(y, x);
+ }
+ const Vec2 ts() const {
+ return Vec2(y, x);
+ }
};
-template<typename T, typename V>
-Vec2<T> operator * (const V& f, const Vec2<T>& vec)
-{
- return Vec2<T>(f*vec.x,f*vec.y);
+template <typename T, typename V>
+Vec2<T> operator*(const V& f, const Vec2<T>& vec) {
+ return Vec2<T>(f * vec.x, f * vec.y);
}
typedef Vec2<float> Vec2f;
-template<typename T>
-class Vec3
-{
+template <typename T>
+class Vec3 {
public:
T x;
T y;
T z;
- T* AsArray() { return &x; }
+ T* AsArray() {
+ return &x;
+ }
Vec3() = default;
- Vec3(const T a[3]) : x(a[0]), y(a[1]), z(a[2]) {}
- Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {}
+ Vec3(const T a[3]) : x(a[0]), y(a[1]), z(a[2]) {
+ }
+ Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {
+ }
- template<typename T2>
+ template <typename T2>
Vec3<T2> Cast() const {
return MakeVec<T2>((T2)x, (T2)y, (T2)z);
}
@@ -196,126 +215,161 @@ public:
static Vec3 FromRGB(unsigned int rgb);
unsigned int ToRGB() const; // alpha bits set to zero
- static Vec3 AssignToAll(const T& f)
- {
+ static Vec3 AssignToAll(const T& f) {
return MakeVec(f, f, f);
}
- void Write(T a[3])
- {
- a[0] = x; a[1] = y; a[2] = z;
+ void Write(T a[3]) {
+ a[0] = x;
+ a[1] = y;
+ a[2] = z;
}
- Vec3<decltype(T{}+T{})> operator +(const Vec3 &other) const
- {
- return MakeVec(x+other.x, y+other.y, z+other.z);
+ Vec3<decltype(T{} + T{})> operator+(const Vec3& other) const {
+ return MakeVec(x + other.x, y + other.y, z + other.z);
}
- void operator += (const Vec3 &other)
- {
- x+=other.x; y+=other.y; z+=other.z;
+ void operator+=(const Vec3& other) {
+ x += other.x;
+ y += other.y;
+ z += other.z;
}
- Vec3<decltype(T{}-T{})> operator -(const Vec3 &other) const
- {
- return MakeVec(x-other.x, y-other.y, z-other.z);
+ Vec3<decltype(T{} - T{})> operator-(const Vec3& other) const {
+ return MakeVec(x - other.x, y - other.y, z - other.z);
}
- void operator -= (const Vec3 &other)
- {
- x-=other.x; y-=other.y; z-=other.z;
+ void operator-=(const Vec3& other) {
+ x -= other.x;
+ y -= other.y;
+ z -= other.z;
}
- template<typename Q = T,class = typename std::enable_if<std::is_signed<Q>::value>::type>
- Vec3<decltype(-T{})> operator -() const
- {
- return MakeVec(-x,-y,-z);
+ template <typename Q = T, class = typename std::enable_if<std::is_signed<Q>::value>::type>
+ Vec3<decltype(-T{})> operator-() const {
+ return MakeVec(-x, -y, -z);
}
- Vec3<decltype(T{}*T{})> operator * (const Vec3 &other) const
- {
- return MakeVec(x*other.x, y*other.y, z*other.z);
+ Vec3<decltype(T{} * T{})> operator*(const Vec3& other) const {
+ return MakeVec(x * other.x, y * other.y, z * other.z);
}
- template<typename V>
- Vec3<decltype(T{}*V{})> operator * (const V& f) const
- {
- return MakeVec(x*f,y*f,z*f);
+ template <typename V>
+ Vec3<decltype(T{} * V{})> operator*(const V& f) const {
+ return MakeVec(x * f, y * f, z * f);
}
- template<typename V>
- void operator *= (const V& f)
- {
- x*=f; y*=f; z*=f;
+ template <typename V>
+ void operator*=(const V& f) {
+ x *= f;
+ y *= f;
+ z *= f;
}
- template<typename V>
- Vec3<decltype(T{}/V{})> operator / (const V& f) const
- {
- return MakeVec(x/f,y/f,z/f);
+ template <typename V>
+ Vec3<decltype(T{} / V{})> operator/(const V& f) const {
+ return MakeVec(x / f, y / f, z / f);
}
- template<typename V>
- void operator /= (const V& f)
- {
+ template <typename V>
+ void operator/=(const V& f) {
*this = *this / f;
}
- T Length2() const
- {
- return x*x + y*y + z*z;
+ T Length2() const {
+ return x * x + y * y + z * z;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec3 WithLength(const float l) const;
- float Distance2To(Vec3 &other);
+ float Distance2To(Vec3& other);
Vec3 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
- T& operator [] (int i) //allow vector[2] = 3 (vector.z=3)
+ T& operator[](int i) // allow vector[2] = 3 (vector.z=3)
{
return *((&x) + i);
}
- T operator [] (const int i) const
- {
+ T operator[](const int i) const {
return *((&x) + i);
}
- void SetZero()
- {
- x=0; y=0; z=0;
+ void SetZero() {
+ x = 0;
+ y = 0;
+ z = 0;
}
// Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates)
- T& u() { return x; }
- T& v() { return y; }
- T& w() { return z; }
+ T& u() {
+ return x;
+ }
+ T& v() {
+ return y;
+ }
+ T& w() {
+ return z;
+ }
- T& r() { return x; }
- T& g() { return y; }
- T& b() { return z; }
+ T& r() {
+ return x;
+ }
+ T& g() {
+ return y;
+ }
+ T& b() {
+ return z;
+ }
- T& s() { return x; }
- T& t() { return y; }
- T& q() { return z; }
+ T& s() {
+ return x;
+ }
+ T& t() {
+ return y;
+ }
+ T& q() {
+ return z;
+ }
- const T& u() const { return x; }
- const T& v() const { return y; }
- const T& w() const { return z; }
+ const T& u() const {
+ return x;
+ }
+ const T& v() const {
+ return y;
+ }
+ const T& w() const {
+ return z;
+ }
- const T& r() const { return x; }
- const T& g() const { return y; }
- const T& b() const { return z; }
+ const T& r() const {
+ return x;
+ }
+ const T& g() const {
+ return y;
+ }
+ const T& b() const {
+ return z;
+ }
- const T& s() const { return x; }
- const T& t() const { return y; }
- const T& q() const { return z; }
+ const T& s() const {
+ return x;
+ }
+ const T& t() const {
+ return y;
+ }
+ const T& q() const {
+ return z;
+ }
- // swizzlers - create a subvector of specific components
- // e.g. Vec2 uv() { return Vec2(x,y); }
- // _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
-#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
-#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
- _DEFINE_SWIZZLER2(a, b, a##b); \
- _DEFINE_SWIZZLER2(a, b, a2##b2); \
- _DEFINE_SWIZZLER2(a, b, a3##b3); \
- _DEFINE_SWIZZLER2(a, b, a4##b4); \
- _DEFINE_SWIZZLER2(b, a, b##a); \
- _DEFINE_SWIZZLER2(b, a, b2##a2); \
- _DEFINE_SWIZZLER2(b, a, b3##a3); \
+// swizzlers - create a subvector of specific components
+// e.g. Vec2 uv() { return Vec2(x,y); }
+// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all
+// component names (x<->r) and permutations (xy<->yx)
+#define _DEFINE_SWIZZLER2(a, b, name) \
+ const Vec2<T> name() const { \
+ return Vec2<T>(a, b); \
+ }
+#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
+ _DEFINE_SWIZZLER2(a, b, a##b); \
+ _DEFINE_SWIZZLER2(a, b, a2##b2); \
+ _DEFINE_SWIZZLER2(a, b, a3##b3); \
+ _DEFINE_SWIZZLER2(a, b, a4##b4); \
+ _DEFINE_SWIZZLER2(b, a, b##a); \
+ _DEFINE_SWIZZLER2(b, a, b2##a2); \
+ _DEFINE_SWIZZLER2(b, a, b3##a3); \
_DEFINE_SWIZZLER2(b, a, b4##a4)
DEFINE_SWIZZLER2(x, y, r, g, u, v, s, t);
@@ -325,41 +379,42 @@ public:
#undef _DEFINE_SWIZZLER2
};
-template<typename T, typename V>
-Vec3<T> operator * (const V& f, const Vec3<T>& vec)
-{
- return Vec3<T>(f*vec.x,f*vec.y,f*vec.z);
+template <typename T, typename V>
+Vec3<T> operator*(const V& f, const Vec3<T>& vec) {
+ return Vec3<T>(f * vec.x, f * vec.y, f * vec.z);
}
-template<>
+template <>
inline float Vec3<float>::Length() const {
return std::sqrt(x * x + y * y + z * z);
}
-template<>
+template <>
inline Vec3<float> Vec3<float>::Normalized() const {
return *this / Length();
}
-
typedef Vec3<float> Vec3f;
-template<typename T>
-class Vec4
-{
+template <typename T>
+class Vec4 {
public:
T x;
T y;
T z;
T w;
- T* AsArray() { return &x; }
+ T* AsArray() {
+ return &x;
+ }
Vec4() = default;
- Vec4(const T a[4]) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {}
- Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {}
+ Vec4(const T a[4]) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {
+ }
+ Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {
+ }
- template<typename T2>
+ template <typename T2>
Vec4<T2> Cast() const {
return Vec4<T2>((T2)x, (T2)y, (T2)z, (T2)w);
}
@@ -372,81 +427,79 @@ public:
return Vec4<T>(f, f, f, f);
}
- void Write(T a[4])
- {
- a[0] = x; a[1] = y; a[2] = z; a[3] = w;
+ void Write(T a[4]) {
+ a[0] = x;
+ a[1] = y;
+ a[2] = z;
+ a[3] = w;
}
- Vec4<decltype(T{}+T{})> operator +(const Vec4& other) const
- {
- return MakeVec(x+other.x, y+other.y, z+other.z, w+other.w);
+ Vec4<decltype(T{} + T{})> operator+(const Vec4& other) const {
+ return MakeVec(x + other.x, y + other.y, z + other.z, w + other.w);
}
- void operator += (const Vec4& other)
- {
- x+=other.x; y+=other.y; z+=other.z; w+=other.w;
+ void operator+=(const Vec4& other) {
+ x += other.x;
+ y += other.y;
+ z += other.z;
+ w += other.w;
}
- Vec4<decltype(T{}-T{})> operator -(const Vec4 &other) const
- {
- return MakeVec(x-other.x, y-other.y, z-other.z, w-other.w);
+ Vec4<decltype(T{} - T{})> operator-(const Vec4& other) const {
+ return MakeVec(x - other.x, y - other.y, z - other.z, w - other.w);
}
- void operator -= (const Vec4 &other)
- {
- x-=other.x; y-=other.y; z-=other.z; w-=other.w;
+ void operator-=(const Vec4& other) {
+ x -= other.x;
+ y -= other.y;
+ z -= other.z;
+ w -= other.w;
}
- template<typename Q = T,class = typename std::enable_if<std::is_signed<Q>::value>::type>
- Vec4<decltype(-T{})> operator -() const
- {
- return MakeVec(-x,-y,-z,-w);
+ template <typename Q = T, class = typename std::enable_if<std::is_signed<Q>::value>::type>
+ Vec4<decltype(-T{})> operator-() const {
+ return MakeVec(-x, -y, -z, -w);
}
- Vec4<decltype(T{}*T{})> operator * (const Vec4 &other) const
- {
- return MakeVec(x*other.x, y*other.y, z*other.z, w*other.w);
+ Vec4<decltype(T{} * T{})> operator*(const Vec4& other) const {
+ return MakeVec(x * other.x, y * other.y, z * other.z, w * other.w);
}
- template<typename V>
- Vec4<decltype(T{}*V{})> operator * (const V& f) const
- {
- return MakeVec(x*f,y*f,z*f,w*f);
+ template <typename V>
+ Vec4<decltype(T{} * V{})> operator*(const V& f) const {
+ return MakeVec(x * f, y * f, z * f, w * f);
}
- template<typename V>
- void operator *= (const V& f)
- {
- x*=f; y*=f; z*=f; w*=f;
+ template <typename V>
+ void operator*=(const V& f) {
+ x *= f;
+ y *= f;
+ z *= f;
+ w *= f;
}
- template<typename V>
- Vec4<decltype(T{}/V{})> operator / (const V& f) const
- {
- return MakeVec(x/f,y/f,z/f,w/f);
+ template <typename V>
+ Vec4<decltype(T{} / V{})> operator/(const V& f) const {
+ return MakeVec(x / f, y / f, z / f, w / f);
}
- template<typename V>
- void operator /= (const V& f)
- {
+ template <typename V>
+ void operator/=(const V& f) {
*this = *this / f;
}
- T Length2() const
- {
- return x*x + y*y + z*z + w*w;
+ T Length2() const {
+ return x * x + y * y + z * z + w * w;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec4 WithLength(const float l) const;
- float Distance2To(Vec4 &other);
+ float Distance2To(Vec4& other);
Vec4 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
- T& operator [] (int i) //allow vector[2] = 3 (vector.z=3)
+ T& operator[](int i) // allow vector[2] = 3 (vector.z=3)
{
return *((&x) + i);
}
- T operator [] (const int i) const
- {
+ T operator[](const int i) const {
return *((&x) + i);
}
- void SetZero()
- {
+ void SetZero() {
x = 0;
y = 0;
z = 0;
@@ -454,30 +507,50 @@ public:
}
// Common alias: RGBA (colors)
- T& r() { return x; }
- T& g() { return y; }
- T& b() { return z; }
- T& a() { return w; }
-
- const T& r() const { return x; }
- const T& g() const { return y; }
- const T& b() const { return z; }
- const T& a() const { return w; }
-
- // Swizzlers - Create a subvector of specific components
- // e.g. Vec2 uv() { return Vec2(x,y); }
-
- // _DEFINE_SWIZZLER2 defines a single such function
- // DEFINE_SWIZZLER2_COMP1 defines one-component functions for all component names (x<->r)
- // DEFINE_SWIZZLER2_COMP2 defines two component functions for all component names (x<->r) and permutations (xy<->yx)
-#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
-#define DEFINE_SWIZZLER2_COMP1(a, a2) \
- _DEFINE_SWIZZLER2(a, a, a##a); \
+ T& r() {
+ return x;
+ }
+ T& g() {
+ return y;
+ }
+ T& b() {
+ return z;
+ }
+ T& a() {
+ return w;
+ }
+
+ const T& r() const {
+ return x;
+ }
+ const T& g() const {
+ return y;
+ }
+ const T& b() const {
+ return z;
+ }
+ const T& a() const {
+ return w;
+ }
+
+// Swizzlers - Create a subvector of specific components
+// e.g. Vec2 uv() { return Vec2(x,y); }
+
+// _DEFINE_SWIZZLER2 defines a single such function
+// DEFINE_SWIZZLER2_COMP1 defines one-component functions for all component names (x<->r)
+// DEFINE_SWIZZLER2_COMP2 defines two component functions for all component names (x<->r) and
+// permutations (xy<->yx)
+#define _DEFINE_SWIZZLER2(a, b, name) \
+ const Vec2<T> name() const { \
+ return Vec2<T>(a, b); \
+ }
+#define DEFINE_SWIZZLER2_COMP1(a, a2) \
+ _DEFINE_SWIZZLER2(a, a, a##a); \
_DEFINE_SWIZZLER2(a, a, a2##a2)
-#define DEFINE_SWIZZLER2_COMP2(a, b, a2, b2) \
- _DEFINE_SWIZZLER2(a, b, a##b); \
- _DEFINE_SWIZZLER2(a, b, a2##b2); \
- _DEFINE_SWIZZLER2(b, a, b##a); \
+#define DEFINE_SWIZZLER2_COMP2(a, b, a2, b2) \
+ _DEFINE_SWIZZLER2(a, b, a##b); \
+ _DEFINE_SWIZZLER2(a, b, a2##b2); \
+ _DEFINE_SWIZZLER2(b, a, b##a); \
_DEFINE_SWIZZLER2(b, a, b2##a2)
DEFINE_SWIZZLER2_COMP2(x, y, r, g);
@@ -494,22 +567,25 @@ public:
#undef DEFINE_SWIZZLER2_COMP2
#undef _DEFINE_SWIZZLER2
-#define _DEFINE_SWIZZLER3(a, b, c, name) const Vec3<T> name() const { return Vec3<T>(a, b, c); }
-#define DEFINE_SWIZZLER3_COMP1(a, a2) \
- _DEFINE_SWIZZLER3(a, a, a, a##a##a); \
+#define _DEFINE_SWIZZLER3(a, b, c, name) \
+ const Vec3<T> name() const { \
+ return Vec3<T>(a, b, c); \
+ }
+#define DEFINE_SWIZZLER3_COMP1(a, a2) \
+ _DEFINE_SWIZZLER3(a, a, a, a##a##a); \
_DEFINE_SWIZZLER3(a, a, a, a2##a2##a2)
-#define DEFINE_SWIZZLER3_COMP3(a, b, c, a2, b2, c2) \
- _DEFINE_SWIZZLER3(a, b, c, a##b##c); \
- _DEFINE_SWIZZLER3(a, c, b, a##c##b); \
- _DEFINE_SWIZZLER3(b, a, c, b##a##c); \
- _DEFINE_SWIZZLER3(b, c, a, b##c##a); \
- _DEFINE_SWIZZLER3(c, a, b, c##a##b); \
- _DEFINE_SWIZZLER3(c, b, a, c##b##a); \
- _DEFINE_SWIZZLER3(a, b, c, a2##b2##c2); \
- _DEFINE_SWIZZLER3(a, c, b, a2##c2##b2); \
- _DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \
- _DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \
- _DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \
+#define DEFINE_SWIZZLER3_COMP3(a, b, c, a2, b2, c2) \
+ _DEFINE_SWIZZLER3(a, b, c, a##b##c); \
+ _DEFINE_SWIZZLER3(a, c, b, a##c##b); \
+ _DEFINE_SWIZZLER3(b, a, c, b##a##c); \
+ _DEFINE_SWIZZLER3(b, c, a, b##c##a); \
+ _DEFINE_SWIZZLER3(c, a, b, c##a##b); \
+ _DEFINE_SWIZZLER3(c, b, a, c##b##a); \
+ _DEFINE_SWIZZLER3(a, b, c, a2##b2##c2); \
+ _DEFINE_SWIZZLER3(a, c, b, a2##c2##b2); \
+ _DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \
+ _DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \
+ _DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \
_DEFINE_SWIZZLER3(c, b, a, c2##b2##a2)
DEFINE_SWIZZLER3_COMP3(x, y, z, r, g, b);
@@ -525,123 +601,104 @@ public:
#undef _DEFINE_SWIZZLER3
};
-
-template<typename T, typename V>
-Vec4<decltype(V{}*T{})> operator * (const V& f, const Vec4<T>& vec)
-{
- return MakeVec(f*vec.x,f*vec.y,f*vec.z,f*vec.w);
+template <typename T, typename V>
+Vec4<decltype(V{} * T{})> operator*(const V& f, const Vec4<T>& vec) {
+ return MakeVec(f * vec.x, f * vec.y, f * vec.z, f * vec.w);
}
typedef Vec4<float> Vec4f;
-
-template<typename T>
-static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec2<T>& a, const Vec2<T>& b)
-{
- return a.x*b.x + a.y*b.y;
+template <typename T>
+static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec2<T>& a, const Vec2<T>& b) {
+ return a.x * b.x + a.y * b.y;
}
-template<typename T>
-static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec3<T>& a, const Vec3<T>& b)
-{
- return a.x*b.x + a.y*b.y + a.z*b.z;
+template <typename T>
+static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) {
+ return a.x * b.x + a.y * b.y + a.z * b.z;
}
-template<typename T>
-static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec4<T>& a, const Vec4<T>& b)
-{
- return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
+template <typename T>
+static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) {
+ return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
-template<typename T>
-static inline Vec3<decltype(T{}*T{}-T{}*T{})> Cross(const Vec3<T>& a, const Vec3<T>& b)
-{
- return MakeVec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
+template <typename T>
+static inline Vec3<decltype(T{} * T{} - T{} * T{})> Cross(const Vec3<T>& a, const Vec3<T>& b) {
+ return MakeVec(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
// linear interpolation via float: 0.0=begin, 1.0=end
-template<typename X>
-static inline decltype(X{}*float{}+X{}*float{}) Lerp(const X& begin, const X& end, const float t)
-{
- return begin*(1.f-t) + end*t;
+template <typename X>
+static inline decltype(X{} * float{} + X{} * float{}) Lerp(const X& begin, const X& end,
+ const float t) {
+ return begin * (1.f - t) + end * t;
}
// linear interpolation via int: 0=begin, base=end
-template<typename X, int base>
-static inline decltype((X{}*int{}+X{}*int{}) / base) LerpInt(const X& begin, const X& end, const int t)
-{
- return (begin*(base-t) + end*t) / base;
+template <typename X, int base>
+static inline decltype((X{} * int{} + X{} * int{}) / base) LerpInt(const X& begin, const X& end,
+ const int t) {
+ return (begin * (base - t) + end * t) / base;
}
// Utility vector factories
-template<typename T>
-static inline Vec2<T> MakeVec(const T& x, const T& y)
-{
+template <typename T>
+static inline Vec2<T> MakeVec(const T& x, const T& y) {
return Vec2<T>{x, y};
}
-template<typename T>
-static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z)
-{
+template <typename T>
+static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z) {
return Vec3<T>{x, y, z};
}
-template<typename T>
-static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw)
-{
+template <typename T>
+static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) {
return MakeVec(x, y, zw[0], zw[1]);
}
-template<typename T>
-static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z)
-{
+template <typename T>
+static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) {
return MakeVec(xy[0], xy[1], z);
}
-template<typename T>
-static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz)
-{
+template <typename T>
+static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) {
return MakeVec(x, yz[0], yz[1]);
}
-template<typename T>
-static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w)
-{
+template <typename T>
+static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) {
return Vec4<T>{x, y, z, w};
}
-template<typename T>
-static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w)
-{
+template <typename T>
+static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) {
return MakeVec(xy[0], xy[1], z, w);
}
-template<typename T>
-static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w)
-{
+template <typename T>
+static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) {
return MakeVec(x, yz[0], yz[1], w);
}
// NOTE: This has priority over "Vec2<Vec2<T>> MakeVec(const Vec2<T>& x, const Vec2<T>& y)".
// Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error
// out soon enough due to misuse of the returned structure.
-template<typename T>
-static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw)
-{
+template <typename T>
+static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) {
return MakeVec(xy[0], xy[1], zw[0], zw[1]);
}
-template<typename T>
-static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w)
-{
+template <typename T>
+static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) {
return MakeVec(xyz[0], xyz[1], xyz[2], w);
}
-template<typename T>
-static inline Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw)
-{
+template <typename T>
+static inline Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) {
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}
-
} // namespace