summaryrefslogtreecommitdiffstats
path: root/external/include/glm/gtx/compatibility.hpp
blob: 9f4819aef3c214a96cb40df9d82f0e75204d3209 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/// @ref gtx_compatibility
/// @file glm/gtx/compatibility.hpp
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
///
/// @defgroup gtx_compatibility GLM_GTX_compatibility
/// @ingroup gtx
///
/// @brief Provide functions to increase the compatibility with Cg and HLSL languages
///
/// <glm/gtx/compatibility.hpp> need to be included to use these functionalities.

#pragma once

// Dependency:
#include "../glm.hpp"
#include "../gtc/quaternion.hpp"

#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
#	pragma message("GLM: GLM_GTX_compatibility extension included")
#endif

#if GLM_COMPILER & GLM_COMPILER_VC
#	include <cfloat>
#elif GLM_COMPILER & GLM_COMPILER_GCC
#	include <cmath>
#	if(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
#		undef isfinite
#	endif
#endif//GLM_COMPILER

namespace glm
{
	/// @addtogroup gtx_compatibility
	/// @{

	template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);}																					//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)

	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, const tvec2<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, const tvec3<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, const tvec4<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)

	template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));}														//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> saturate(const tvec2<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> saturate(const tvec3<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> saturate(const tvec4<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)

	template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);}																//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> atan2(const tvec2<T, P>& x, const tvec2<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> atan2(const tvec3<T, P>& x, const tvec3<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> atan2(const tvec4<T, P>& x, const tvec4<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)

	template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x);											//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_DECL tvec1<bool, P> isfinite(const tvec1<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_DECL tvec2<bool, P> isfinite(const tvec2<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_DECL tvec3<bool, P> isfinite(const tvec3<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
	template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> isfinite(const tvec4<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)

	typedef bool						bool1;			//!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension)
	typedef tvec2<bool, highp>			bool2;			//!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
	typedef tvec3<bool, highp>			bool3;			//!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
	typedef tvec4<bool, highp>			bool4;			//!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)

	typedef bool						bool1x1;		//!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension)
	typedef tmat2x2<bool, highp>		bool2x2;		//!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x3<bool, highp>		bool2x3;		//!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x4<bool, highp>		bool2x4;		//!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x2<bool, highp>		bool3x2;		//!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x3<bool, highp>		bool3x3;		//!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x4<bool, highp>		bool3x4;		//!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x2<bool, highp>		bool4x2;		//!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x3<bool, highp>		bool4x3;		//!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x4<bool, highp>		bool4x4;		//!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)

	typedef int							int1;			//!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension)
	typedef tvec2<int, highp>			int2;			//!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
	typedef tvec3<int, highp>			int3;			//!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
	typedef tvec4<int, highp>			int4;			//!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)

	typedef int							int1x1;			//!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension)
	typedef tmat2x2<int, highp>		int2x2;			//!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x3<int, highp>		int2x3;			//!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x4<int, highp>		int2x4;			//!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x2<int, highp>		int3x2;			//!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x3<int, highp>		int3x3;			//!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x4<int, highp>		int3x4;			//!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x2<int, highp>		int4x2;			//!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x3<int, highp>		int4x3;			//!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x4<int, highp>		int4x4;			//!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)

	typedef float						float1;			//!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
	typedef tvec2<float, highp>		float2;			//!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
	typedef tvec3<float, highp>		float3;			//!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
	typedef tvec4<float, highp>		float4;			//!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)

	typedef float						float1x1;		//!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
	typedef tmat2x2<float, highp>		float2x2;		//!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x3<float, highp>		float2x3;		//!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x4<float, highp>		float2x4;		//!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x2<float, highp>		float3x2;		//!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x3<float, highp>		float3x3;		//!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x4<float, highp>		float3x4;		//!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x2<float, highp>		float4x2;		//!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x3<float, highp>		float4x3;		//!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x4<float, highp>		float4x4;		//!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)

	typedef double						double1;		//!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
	typedef tvec2<double, highp>		double2;		//!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
	typedef tvec3<double, highp>		double3;		//!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
	typedef tvec4<double, highp>		double4;		//!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)

	typedef double						double1x1;		//!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
	typedef tmat2x2<double, highp>		double2x2;		//!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x3<double, highp>		double2x3;		//!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat2x4<double, highp>		double2x4;		//!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x2<double, highp>		double3x2;		//!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x3<double, highp>		double3x3;		//!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat3x4<double, highp>		double3x4;		//!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x2<double, highp>		double4x2;		//!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x3<double, highp>		double4x3;		//!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
	typedef tmat4x4<double, highp>		double4x4;		//!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)

	/// @}
}//namespace glm

#include "compatibility.inl"