1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
// FastRandom.cpp
// Implements the cFastRandom class representing a fast random number generator
#include "Globals.h"
#include "FastRandom.h"
////////////////////////////////////////////////////////////////////////////////
// cFastRandom:
#if 0 && defined(_DEBUG)
// Self-test
// Both ints and floats are quick-tested to see if the random is calculated correctly, checking the range in ASSERTs,
// and if it performs well in terms of distribution (checked by avg, expected to be in the range midpoint
class cFastRandomTest
{
public:
cFastRandomTest(void)
{
TestInts();
TestFloats();
}
void TestInts(void)
{
printf("Testing ints...\n");
cFastRandom rnd;
int sum = 0;
const int BUCKETS = 8;
int Counts[BUCKETS];
memset(Counts, 0, sizeof(Counts));
const int ITER = 10000;
for (int i = 0; i < ITER; i++)
{
int v = rnd.NextInt(1000);
ASSERT(v >= 0);
ASSERT(v < 1000);
Counts[v % BUCKETS]++;
sum += v;
}
double avg = (double)sum / ITER;
printf("avg: %f\n", avg);
for (int i = 0; i < BUCKETS; i++)
{
printf(" bucket %d: %d\n", i, Counts[i]);
}
}
void TestFloats(void)
{
printf("Testing floats...\n");
cFastRandom rnd;
float sum = 0;
const int BUCKETS = 8;
int Counts[BUCKETS];
memset(Counts, 0, sizeof(Counts));
const int ITER = 10000;
for (int i = 0; i < ITER; i++)
{
float v = rnd.NextFloat(1000);
ASSERT(v >= 0);
ASSERT(v <= 1000);
Counts[((int)v) % BUCKETS]++;
sum += v;
}
sum = sum / ITER;
printf("avg: %f\n", sum);
for (int i = 0; i < BUCKETS; i++)
{
printf(" bucket %d: %d\n", i, Counts[i]);
}
}
} g_Test;
#endif
cFastRandom::cFastRandom(void) :
m_LinearRand(static_cast<unsigned>(std::chrono::system_clock::now().time_since_epoch().count()))
{
}
int cFastRandom::NextInt(int a_Range)
{
std::uniform_int_distribution<> distribution(0, a_Range - 1);
return distribution(m_LinearRand);
}
float cFastRandom::NextFloat(float a_Range)
{
std::uniform_real_distribution<float> distribution(0, a_Range);
return distribution(m_LinearRand);
}
int cFastRandom::GenerateRandomInteger(int a_Begin, int a_End)
{
std::uniform_int_distribution<> distribution(a_Begin, a_End);
return distribution(m_LinearRand);
}
////////////////////////////////////////////////////////////////////////////////
// MTRand:
MTRand::MTRand() :
m_MersenneRand(static_cast<unsigned>(std::chrono::system_clock::now().time_since_epoch().count()))
{
}
int MTRand::randInt(int a_Range)
{
std::uniform_int_distribution<> distribution(0, a_Range);
return distribution(m_MersenneRand);
}
int MTRand::randInt()
{
std::uniform_int_distribution<> distribution(0, std::numeric_limits<int>::max());
return distribution(m_MersenneRand);
}
double MTRand::rand(double a_Range)
{
std::uniform_real_distribution<> distribution(0, a_Range);
return distribution(m_MersenneRand);
}
|