diff options
author | bunnei <bunneidev@gmail.com> | 2015-08-12 06:00:44 +0200 |
---|---|---|
committer | bunnei <bunneidev@gmail.com> | 2015-08-16 00:03:25 +0200 |
commit | bd7e691f78d916ed6ae5396b2d646d9b3a053dd7 (patch) | |
tree | a20367004f684afeca83e795ce66e62115e8e79d /src/common/x64/emitter.h | |
parent | JIT: Support negative address offsets. (diff) | |
download | yuzu-bd7e691f78d916ed6ae5396b2d646d9b3a053dd7.tar yuzu-bd7e691f78d916ed6ae5396b2d646d9b3a053dd7.tar.gz yuzu-bd7e691f78d916ed6ae5396b2d646d9b3a053dd7.tar.bz2 yuzu-bd7e691f78d916ed6ae5396b2d646d9b3a053dd7.tar.lz yuzu-bd7e691f78d916ed6ae5396b2d646d9b3a053dd7.tar.xz yuzu-bd7e691f78d916ed6ae5396b2d646d9b3a053dd7.tar.zst yuzu-bd7e691f78d916ed6ae5396b2d646d9b3a053dd7.zip |
Diffstat (limited to 'src/common/x64/emitter.h')
-rw-r--r-- | src/common/x64/emitter.h | 1067 |
1 files changed, 1067 insertions, 0 deletions
diff --git a/src/common/x64/emitter.h b/src/common/x64/emitter.h new file mode 100644 index 000000000..312e9dc19 --- /dev/null +++ b/src/common/x64/emitter.h @@ -0,0 +1,1067 @@ +// Copyright (C) 2003 Dolphin Project. + +// This program is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, version 2.0 or later versions. + +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License 2.0 for more details. + +// A copy of the GPL 2.0 should have been included with the program. +// If not, see http://www.gnu.org/licenses/ + +// Official SVN repository and contact information can be found at +// http://code.google.com/p/dolphin-emu/ + +#pragma once + +#include "common/assert.h" +#include "common/common_types.h" +#include "common/code_block.h" + +#if defined(ARCHITECTURE_X64) && !defined(_ARCH_64) +#define _ARCH_64 +#endif + +#ifdef _ARCH_64 +#define PTRBITS 64 +#else +#define PTRBITS 32 +#endif + +namespace Gen +{ + +enum X64Reg +{ + EAX = 0, EBX = 3, ECX = 1, EDX = 2, + ESI = 6, EDI = 7, EBP = 5, ESP = 4, + + RAX = 0, RBX = 3, RCX = 1, RDX = 2, + RSI = 6, RDI = 7, RBP = 5, RSP = 4, + R8 = 8, R9 = 9, R10 = 10,R11 = 11, + R12 = 12,R13 = 13,R14 = 14,R15 = 15, + + AL = 0, BL = 3, CL = 1, DL = 2, + SIL = 6, DIL = 7, BPL = 5, SPL = 4, + AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106, + + AX = 0, BX = 3, CX = 1, DX = 2, + SI = 6, DI = 7, BP = 5, SP = 4, + + XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, + XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, + + YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, + YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15, + + INVALID_REG = 0xFFFFFFFF +}; + +enum CCFlags +{ + CC_O = 0, + CC_NO = 1, + CC_B = 2, CC_C = 2, CC_NAE = 2, + CC_NB = 3, CC_NC = 3, CC_AE = 3, + CC_Z = 4, CC_E = 4, + CC_NZ = 5, CC_NE = 5, + CC_BE = 6, CC_NA = 6, + CC_NBE = 7, CC_A = 7, + CC_S = 8, + CC_NS = 9, + CC_P = 0xA, CC_PE = 0xA, + CC_NP = 0xB, CC_PO = 0xB, + CC_L = 0xC, CC_NGE = 0xC, + CC_NL = 0xD, CC_GE = 0xD, + CC_LE = 0xE, CC_NG = 0xE, + CC_NLE = 0xF, CC_G = 0xF +}; + +enum +{ + NUMGPRs = 16, + NUMXMMs = 16, +}; + +enum +{ + SCALE_NONE = 0, + SCALE_1 = 1, + SCALE_2 = 2, + SCALE_4 = 4, + SCALE_8 = 8, + SCALE_ATREG = 16, + //SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG + SCALE_NOBASE_2 = 34, + SCALE_NOBASE_4 = 36, + SCALE_NOBASE_8 = 40, + SCALE_RIP = 0xFF, + SCALE_IMM8 = 0xF0, + SCALE_IMM16 = 0xF1, + SCALE_IMM32 = 0xF2, + SCALE_IMM64 = 0xF3, +}; + +enum NormalOp { + nrmADD, + nrmADC, + nrmSUB, + nrmSBB, + nrmAND, + nrmOR , + nrmXOR, + nrmMOV, + nrmTEST, + nrmCMP, + nrmXCHG, +}; + +enum { + CMP_EQ = 0, + CMP_LT = 1, + CMP_LE = 2, + CMP_UNORD = 3, + CMP_NEQ = 4, + CMP_NLT = 5, + CMP_NLE = 6, + CMP_ORD = 7, +}; + +enum FloatOp { + floatLD = 0, + floatST = 2, + floatSTP = 3, + floatLD80 = 5, + floatSTP80 = 7, + + floatINVALID = -1, +}; + +enum FloatRound { + FROUND_NEAREST = 0, + FROUND_FLOOR = 1, + FROUND_CEIL = 2, + FROUND_ZERO = 3, + FROUND_MXCSR = 4, + + FROUND_RAISE_PRECISION = 0, + FROUND_IGNORE_PRECISION = 8, +}; + +class XEmitter; + +// RIP addressing does not benefit from micro op fusion on Core arch +struct OpArg +{ + OpArg() {} // dummy op arg, used for storage + OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX) + { + operandReg = 0; + scale = (u8)_scale; + offsetOrBaseReg = (u16)rmReg; + indexReg = (u16)scaledReg; + //if scale == 0 never mind offsetting + offset = _offset; + } + bool operator==(const OpArg &b) const + { + return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg && + indexReg == b.indexReg && offset == b.offset; + } + void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const; + void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const; + void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const; + void WriteFloatModRM(XEmitter *emit, FloatOp op); + void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits); + // This one is public - must be written to + u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available. + u16 operandReg; + + void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const; + bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;} + bool IsSimpleReg() const {return scale == SCALE_NONE;} + bool IsSimpleReg(X64Reg reg) const + { + if (!IsSimpleReg()) + return false; + return GetSimpleReg() == reg; + } + + bool CanDoOpWith(const OpArg &other) const + { + if (IsSimpleReg()) return true; + if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false; + return true; + } + + int GetImmBits() const + { + switch (scale) + { + case SCALE_IMM8: return 8; + case SCALE_IMM16: return 16; + case SCALE_IMM32: return 32; + case SCALE_IMM64: return 64; + default: return -1; + } + } + + void SetImmBits(int bits) { + switch (bits) + { + case 8: scale = SCALE_IMM8; break; + case 16: scale = SCALE_IMM16; break; + case 32: scale = SCALE_IMM32; break; + case 64: scale = SCALE_IMM64; break; + } + } + + X64Reg GetSimpleReg() const + { + if (scale == SCALE_NONE) + return (X64Reg)offsetOrBaseReg; + else + return INVALID_REG; + } + + u32 GetImmValue() const { + return (u32)offset; + } + + // For loops. + void IncreaseOffset(int sz) { + offset += sz; + } + +private: + u8 scale; + u16 offsetOrBaseReg; + u16 indexReg; +}; + +inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);} +template <typename T> +inline OpArg M(const T *ptr) {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);} +inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);} +inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);} + +inline OpArg MDisp(X64Reg value, int offset) +{ + return OpArg((u32)offset, SCALE_ATREG, value); +} + +inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) +{ + return OpArg(offset, scale, base, scaled); +} + +inline OpArg MScaled(X64Reg scaled, int scale, int offset) +{ + if (scale == SCALE_1) + return OpArg(offset, SCALE_ATREG, scaled); + else + return OpArg(offset, scale | 0x20, RAX, scaled); +} + +inline OpArg MRegSum(X64Reg base, X64Reg offset) +{ + return MComplex(base, offset, 1, 0); +} + +inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);} +inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used +inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);} +inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);} +inline OpArg UImmAuto(u32 imm) { + return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8); +} +inline OpArg SImmAuto(s32 imm) { + return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8); +} + +#ifdef _ARCH_64 +inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);} +#else +inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);} +#endif + +inline u32 PtrOffset(const void* ptr, const void* base) +{ +#ifdef _ARCH_64 + s64 distance = (s64)ptr-(s64)base; + if (distance >= 0x80000000LL || + distance < -0x80000000LL) + { + ASSERT_MSG(0, "pointer offset out of range"); + return 0; + } + + return (u32)distance; +#else + return (u32)ptr-(u32)base; +#endif +} + +//usage: int a[]; ARRAY_OFFSET(a,10) +#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0])) +//usage: struct {int e;} s; STRUCT_OFFSET(s,e) +#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str))) + +struct FixupBranch +{ + u8 *ptr; + int type; //0 = 8bit 1 = 32bit +}; + +enum SSECompare +{ + EQ = 0, + LT, + LE, + UNORD, + NEQ, + NLT, + NLE, + ORD, +}; + +typedef const u8* JumpTarget; + +class XEmitter +{ + friend struct OpArg; // for Write8 etc +private: + u8 *code; + bool flags_locked; + + void CheckFlags(); + + void Rex(int w, int r, int x, int b); + void WriteSimple1Byte(int bits, u8 byte, X64Reg reg); + void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg); + void WriteMulDivType(int bits, OpArg src, int ext); + void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false); + void WriteShift(int bits, OpArg dest, OpArg &shift, int ext); + void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext); + void WriteMXCSR(OpArg arg, int ext); + void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); + void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); + void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); + void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); + void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); + void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); + void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); + void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); + void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg); + void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2); + + void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp); + +protected: + inline void Write8(u8 value) {*code++ = value;} + inline void Write16(u16 value) {*(u16*)code = (value); code += 2;} + inline void Write32(u32 value) {*(u32*)code = (value); code += 4;} + inline void Write64(u64 value) {*(u64*)code = (value); code += 8;} + +public: + XEmitter() { code = nullptr; flags_locked = false; } + XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; } + virtual ~XEmitter() {} + + void WriteModRM(int mod, int rm, int reg); + void WriteSIB(int scale, int index, int base); + + void SetCodePtr(u8 *ptr); + void ReserveCodeSpace(int bytes); + const u8 *AlignCode4(); + const u8 *AlignCode16(); + const u8 *AlignCodePage(); + const u8 *GetCodePtr() const; + u8 *GetWritableCodePtr(); + + void LockFlags() { flags_locked = true; } + void UnlockFlags() { flags_locked = false; } + + // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU + // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr., + // INC and DEC are slow on Intel Core, but not on AMD. They create a + // false flag dependency because they only update a subset of the flags. + // XCHG is SLOW and should be avoided. + + // Debug breakpoint + void INT3(); + + // Do nothing + void NOP(size_t count = 1); + + // Save energy in wait-loops on P4 only. Probably not too useful. + void PAUSE(); + + // Flag control + void STC(); + void CLC(); + void CMC(); + + // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD! + void LAHF(); // 3 cycle vector path + void SAHF(); // direct path fast + + + // Stack control + void PUSH(X64Reg reg); + void POP(X64Reg reg); + void PUSH(int bits, const OpArg ®); + void POP(int bits, const OpArg ®); + void PUSHF(); + void POPF(); + + // Flow control + void RET(); + void RET_FAST(); + void UD2(); + FixupBranch J(bool force5bytes = false); + + void JMP(const u8 * addr, bool force5Bytes = false); + void JMP(OpArg arg); + void JMPptr(const OpArg &arg); + void JMPself(); //infinite loop! +#ifdef CALL +#undef CALL +#endif + void CALL(const void *fnptr); + void CALLptr(OpArg arg); + + FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false); + //void J_CC(CCFlags conditionCode, JumpTarget target); + void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false); + + void SetJumpTarget(const FixupBranch &branch); + + void SETcc(CCFlags flag, OpArg dest); + // Note: CMOV brings small if any benefit on current cpus. + void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag); + + // Fences + void LFENCE(); + void MFENCE(); + void SFENCE(); + + // Bit scan + void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit + void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit + + // Cache control + enum PrefetchLevel + { + PF_NTA, //Non-temporal (data used once and only once) + PF_T0, //All cache levels + PF_T1, //Levels 2+ (aliased to T0 on AMD) + PF_T2, //Levels 3+ (aliased to T0 on AMD) + }; + void PREFETCH(PrefetchLevel level, OpArg arg); + void MOVNTI(int bits, OpArg dest, X64Reg src); + void MOVNTDQ(OpArg arg, X64Reg regOp); + void MOVNTPS(OpArg arg, X64Reg regOp); + void MOVNTPD(OpArg arg, X64Reg regOp); + + // Multiplication / division + void MUL(int bits, OpArg src); //UNSIGNED + void IMUL(int bits, OpArg src); //SIGNED + void IMUL(int bits, X64Reg regOp, OpArg src); + void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm); + void DIV(int bits, OpArg src); + void IDIV(int bits, OpArg src); + + // Shift + void ROL(int bits, OpArg dest, OpArg shift); + void ROR(int bits, OpArg dest, OpArg shift); + void RCL(int bits, OpArg dest, OpArg shift); + void RCR(int bits, OpArg dest, OpArg shift); + void SHL(int bits, OpArg dest, OpArg shift); + void SHR(int bits, OpArg dest, OpArg shift); + void SAR(int bits, OpArg dest, OpArg shift); + + // Bit Test + void BT(int bits, OpArg dest, OpArg index); + void BTS(int bits, OpArg dest, OpArg index); + void BTR(int bits, OpArg dest, OpArg index); + void BTC(int bits, OpArg dest, OpArg index); + + // Double-Precision Shift + void SHRD(int bits, OpArg dest, OpArg src, OpArg shift); + void SHLD(int bits, OpArg dest, OpArg src, OpArg shift); + + // Extend EAX into EDX in various ways + void CWD(int bits = 16); + inline void CDQ() {CWD(32);} + inline void CQO() {CWD(64);} + void CBW(int bits = 8); + inline void CWDE() {CBW(16);} + inline void CDQE() {CBW(32);} + + // Load effective address + void LEA(int bits, X64Reg dest, OpArg src); + + // Integer arithmetic + void NEG (int bits, OpArg src); + void ADD (int bits, const OpArg &a1, const OpArg &a2); + void ADC (int bits, const OpArg &a1, const OpArg &a2); + void SUB (int bits, const OpArg &a1, const OpArg &a2); + void SBB (int bits, const OpArg &a1, const OpArg &a2); + void AND (int bits, const OpArg &a1, const OpArg &a2); + void CMP (int bits, const OpArg &a1, const OpArg &a2); + + // Bit operations + void NOT (int bits, OpArg src); + void OR (int bits, const OpArg &a1, const OpArg &a2); + void XOR (int bits, const OpArg &a1, const OpArg &a2); + void MOV (int bits, const OpArg &a1, const OpArg &a2); + void TEST(int bits, const OpArg &a1, const OpArg &a2); + + // Are these useful at all? Consider removing. + void XCHG(int bits, const OpArg &a1, const OpArg &a2); + void XCHG_AHAL(); + + // Byte swapping (32 and 64-bit only). + void BSWAP(int bits, X64Reg reg); + + // Sign/zero extension + void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary + void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src); + + // Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE. + void MOVBE(int dbits, const OpArg& dest, const OpArg& src); + + // Available only on AMD >= Phenom or Intel >= Haswell + void LZCNT(int bits, X64Reg dest, OpArg src); + // Note: this one is actually part of BMI1 + void TZCNT(int bits, X64Reg dest, OpArg src); + + // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64) + void STMXCSR(OpArg memloc); + void LDMXCSR(OpArg memloc); + + // Prefixes + void LOCK(); + void REP(); + void REPNE(); + void FSOverride(); + void GSOverride(); + + // x87 + enum x87StatusWordBits { + x87_InvalidOperation = 0x1, + x87_DenormalizedOperand = 0x2, + x87_DivisionByZero = 0x4, + x87_Overflow = 0x8, + x87_Underflow = 0x10, + x87_Precision = 0x20, + x87_StackFault = 0x40, + x87_ErrorSummary = 0x80, + x87_C0 = 0x100, + x87_C1 = 0x200, + x87_C2 = 0x400, + x87_TopOfStack = 0x2000 | 0x1000 | 0x800, + x87_C3 = 0x4000, + x87_FPUBusy = 0x8000, + }; + + void FLD(int bits, OpArg src); + void FST(int bits, OpArg dest); + void FSTP(int bits, OpArg dest); + void FNSTSW_AX(); + void FWAIT(); + + // SSE/SSE2: Floating point arithmetic + void ADDSS(X64Reg regOp, OpArg arg); + void ADDSD(X64Reg regOp, OpArg arg); + void SUBSS(X64Reg regOp, OpArg arg); + void SUBSD(X64Reg regOp, OpArg arg); + void MULSS(X64Reg regOp, OpArg arg); + void MULSD(X64Reg regOp, OpArg arg); + void DIVSS(X64Reg regOp, OpArg arg); + void DIVSD(X64Reg regOp, OpArg arg); + void MINSS(X64Reg regOp, OpArg arg); + void MINSD(X64Reg regOp, OpArg arg); + void MAXSS(X64Reg regOp, OpArg arg); + void MAXSD(X64Reg regOp, OpArg arg); + void SQRTSS(X64Reg regOp, OpArg arg); + void SQRTSD(X64Reg regOp, OpArg arg); + void RSQRTSS(X64Reg regOp, OpArg arg); + + // SSE/SSE2: Floating point bitwise (yes) + void CMPSS(X64Reg regOp, OpArg arg, u8 compare); + void CMPSD(X64Reg regOp, OpArg arg, u8 compare); + + inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); } + inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); } + inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); } + inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); } + inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); } + inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); } + inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); } + + // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double) + void ADDPS(X64Reg regOp, OpArg arg); + void ADDPD(X64Reg regOp, OpArg arg); + void SUBPS(X64Reg regOp, OpArg arg); + void SUBPD(X64Reg regOp, OpArg arg); + void CMPPS(X64Reg regOp, OpArg arg, u8 compare); + void CMPPD(X64Reg regOp, OpArg arg, u8 compare); + void MULPS(X64Reg regOp, OpArg arg); + void MULPD(X64Reg regOp, OpArg arg); + void DIVPS(X64Reg regOp, OpArg arg); + void DIVPD(X64Reg regOp, OpArg arg); + void MINPS(X64Reg regOp, OpArg arg); + void MINPD(X64Reg regOp, OpArg arg); + void MAXPS(X64Reg regOp, OpArg arg); + void MAXPD(X64Reg regOp, OpArg arg); + void SQRTPS(X64Reg regOp, OpArg arg); + void SQRTPD(X64Reg regOp, OpArg arg); + void RCPPS(X64Reg regOp, OpArg arg); + void RSQRTPS(X64Reg regOp, OpArg arg); + + // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double) + void ANDPS(X64Reg regOp, OpArg arg); + void ANDPD(X64Reg regOp, OpArg arg); + void ANDNPS(X64Reg regOp, OpArg arg); + void ANDNPD(X64Reg regOp, OpArg arg); + void ORPS(X64Reg regOp, OpArg arg); + void ORPD(X64Reg regOp, OpArg arg); + void XORPS(X64Reg regOp, OpArg arg); + void XORPD(X64Reg regOp, OpArg arg); + + // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation. + void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle); + void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle); + + // SSE/SSE2: Useful alternative to shuffle in some cases. + void MOVDDUP(X64Reg regOp, OpArg arg); + + // TODO: Actually implement +#if 0 + // SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products... + void ADDSUBPS(X64Reg dest, OpArg src); + void ADDSUBPD(X64Reg dest, OpArg src); + void HADDPD(X64Reg dest, OpArg src); + void HSUBPS(X64Reg dest, OpArg src); + void HSUBPD(X64Reg dest, OpArg src); + + // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask". + void DPPD(X64Reg dest, OpArg src, u8 arg); + + // These are probably useful for VFPU emulation. + void INSERTPS(X64Reg dest, OpArg src, u8 arg); + void EXTRACTPS(OpArg dest, X64Reg src, u8 arg); +#endif + + // SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy. + void HADDPS(X64Reg dest, OpArg src); + + // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask". + void DPPS(X64Reg dest, OpArg src, u8 arg); + + void UNPCKLPS(X64Reg dest, OpArg src); + void UNPCKHPS(X64Reg dest, OpArg src); + void UNPCKLPD(X64Reg dest, OpArg src); + void UNPCKHPD(X64Reg dest, OpArg src); + + // SSE/SSE2: Compares. + void COMISS(X64Reg regOp, OpArg arg); + void COMISD(X64Reg regOp, OpArg arg); + void UCOMISS(X64Reg regOp, OpArg arg); + void UCOMISD(X64Reg regOp, OpArg arg); + + // SSE/SSE2: Moves. Use the right data type for your data, in most cases. + void MOVAPS(X64Reg regOp, OpArg arg); + void MOVAPD(X64Reg regOp, OpArg arg); + void MOVAPS(OpArg arg, X64Reg regOp); + void MOVAPD(OpArg arg, X64Reg regOp); + + void MOVUPS(X64Reg regOp, OpArg arg); + void MOVUPD(X64Reg regOp, OpArg arg); + void MOVUPS(OpArg arg, X64Reg regOp); + void MOVUPD(OpArg arg, X64Reg regOp); + + void MOVDQA(X64Reg regOp, OpArg arg); + void MOVDQA(OpArg arg, X64Reg regOp); + void MOVDQU(X64Reg regOp, OpArg arg); + void MOVDQU(OpArg arg, X64Reg regOp); + + void MOVSS(X64Reg regOp, OpArg arg); + void MOVSD(X64Reg regOp, OpArg arg); + void MOVSS(OpArg arg, X64Reg regOp); + void MOVSD(OpArg arg, X64Reg regOp); + + void MOVLPS(X64Reg regOp, OpArg arg); + void MOVLPD(X64Reg regOp, OpArg arg); + void MOVLPS(OpArg arg, X64Reg regOp); + void MOVLPD(OpArg arg, X64Reg regOp); + + void MOVHPS(X64Reg regOp, OpArg arg); + void MOVHPD(X64Reg regOp, OpArg arg); + void MOVHPS(OpArg arg, X64Reg regOp); + void MOVHPD(OpArg arg, X64Reg regOp); + + void MOVHLPS(X64Reg regOp1, X64Reg regOp2); + void MOVLHPS(X64Reg regOp1, X64Reg regOp2); + + void MOVD_xmm(X64Reg dest, const OpArg &arg); + void MOVQ_xmm(X64Reg dest, OpArg arg); + void MOVD_xmm(const OpArg &arg, X64Reg src); + void MOVQ_xmm(OpArg arg, X64Reg src); + + // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question. + void MOVMSKPS(X64Reg dest, OpArg arg); + void MOVMSKPD(X64Reg dest, OpArg arg); + + // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one. + void MASKMOVDQU(X64Reg dest, X64Reg src); + void LDDQU(X64Reg dest, OpArg src); + + // SSE/SSE2: Data type conversions. + void CVTPS2PD(X64Reg dest, OpArg src); + void CVTPD2PS(X64Reg dest, OpArg src); + void CVTSS2SD(X64Reg dest, OpArg src); + void CVTSI2SS(X64Reg dest, OpArg src); + void CVTSD2SS(X64Reg dest, OpArg src); + void CVTSI2SD(X64Reg dest, OpArg src); + void CVTDQ2PD(X64Reg regOp, OpArg arg); + void CVTPD2DQ(X64Reg regOp, OpArg arg); + void CVTDQ2PS(X64Reg regOp, OpArg arg); + void CVTPS2DQ(X64Reg regOp, OpArg arg); + + void CVTTPS2DQ(X64Reg regOp, OpArg arg); + void CVTTPD2DQ(X64Reg regOp, OpArg arg); + + // Destinations are X64 regs (rax, rbx, ...) for these instructions. + void CVTSS2SI(X64Reg xregdest, OpArg src); + void CVTSD2SI(X64Reg xregdest, OpArg src); + void CVTTSS2SI(X64Reg xregdest, OpArg arg); + void CVTTSD2SI(X64Reg xregdest, OpArg arg); + + // SSE2: Packed integer instructions + void PACKSSDW(X64Reg dest, OpArg arg); + void PACKSSWB(X64Reg dest, OpArg arg); + void PACKUSDW(X64Reg dest, OpArg arg); + void PACKUSWB(X64Reg dest, OpArg arg); + + void PUNPCKLBW(X64Reg dest, const OpArg &arg); + void PUNPCKLWD(X64Reg dest, const OpArg &arg); + void PUNPCKLDQ(X64Reg dest, const OpArg &arg); + void PUNPCKLQDQ(X64Reg dest, const OpArg &arg); + + void PTEST(X64Reg dest, OpArg arg); + void PAND(X64Reg dest, OpArg arg); + void PANDN(X64Reg dest, OpArg arg); + void PXOR(X64Reg dest, OpArg arg); + void POR(X64Reg dest, OpArg arg); + + void PADDB(X64Reg dest, OpArg arg); + void PADDW(X64Reg dest, OpArg arg); + void PADDD(X64Reg dest, OpArg arg); + void PADDQ(X64Reg dest, OpArg arg); + + void PADDSB(X64Reg dest, OpArg arg); + void PADDSW(X64Reg dest, OpArg arg); + void PADDUSB(X64Reg dest, OpArg arg); + void PADDUSW(X64Reg dest, OpArg arg); + + void PSUBB(X64Reg dest, OpArg arg); + void PSUBW(X64Reg dest, OpArg arg); + void PSUBD(X64Reg dest, OpArg arg); + void PSUBQ(X64Reg dest, OpArg arg); + + void PSUBSB(X64Reg dest, OpArg arg); + void PSUBSW(X64Reg dest, OpArg arg); + void PSUBUSB(X64Reg dest, OpArg arg); + void PSUBUSW(X64Reg dest, OpArg arg); + + void PAVGB(X64Reg dest, OpArg arg); + void PAVGW(X64Reg dest, OpArg arg); + + void PCMPEQB(X64Reg dest, OpArg arg); + void PCMPEQW(X64Reg dest, OpArg arg); + void PCMPEQD(X64Reg dest, OpArg arg); + + void PCMPGTB(X64Reg dest, OpArg arg); + void PCMPGTW(X64Reg dest, OpArg arg); + void PCMPGTD(X64Reg dest, OpArg arg); + + void PEXTRW(X64Reg dest, OpArg arg, u8 subreg); + void PINSRW(X64Reg dest, OpArg arg, u8 subreg); + + void PMADDWD(X64Reg dest, OpArg arg); + void PSADBW(X64Reg dest, OpArg arg); + + void PMAXSW(X64Reg dest, OpArg arg); + void PMAXUB(X64Reg dest, OpArg arg); + void PMINSW(X64Reg dest, OpArg arg); + void PMINUB(X64Reg dest, OpArg arg); + // SSE4: More MAX/MIN instructions. + void PMINSB(X64Reg dest, OpArg arg); + void PMINSD(X64Reg dest, OpArg arg); + void PMINUW(X64Reg dest, OpArg arg); + void PMINUD(X64Reg dest, OpArg arg); + void PMAXSB(X64Reg dest, OpArg arg); + void PMAXSD(X64Reg dest, OpArg arg); + void PMAXUW(X64Reg dest, OpArg arg); + void PMAXUD(X64Reg dest, OpArg arg); + + void PMOVMSKB(X64Reg dest, OpArg arg); + void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle); + void PSHUFB(X64Reg dest, OpArg arg); + + void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle); + void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle); + + void PSRLW(X64Reg reg, int shift); + void PSRLD(X64Reg reg, int shift); + void PSRLQ(X64Reg reg, int shift); + void PSRLQ(X64Reg reg, OpArg arg); + void PSRLDQ(X64Reg reg, int shift); + + void PSLLW(X64Reg reg, int shift); + void PSLLD(X64Reg reg, int shift); + void PSLLQ(X64Reg reg, int shift); + void PSLLDQ(X64Reg reg, int shift); + + void PSRAW(X64Reg reg, int shift); + void PSRAD(X64Reg reg, int shift); + + // SSE4: data type conversions + void PMOVSXBW(X64Reg dest, OpArg arg); + void PMOVSXBD(X64Reg dest, OpArg arg); + void PMOVSXBQ(X64Reg dest, OpArg arg); + void PMOVSXWD(X64Reg dest, OpArg arg); + void PMOVSXWQ(X64Reg dest, OpArg arg); + void PMOVSXDQ(X64Reg dest, OpArg arg); + void PMOVZXBW(X64Reg dest, OpArg arg); + void PMOVZXBD(X64Reg dest, OpArg arg); + void PMOVZXBQ(X64Reg dest, OpArg arg); + void PMOVZXWD(X64Reg dest, OpArg arg); + void PMOVZXWQ(X64Reg dest, OpArg arg); + void PMOVZXDQ(X64Reg dest, OpArg arg); + + // SSE4: variable blend instructions (xmm0 implicit argument) + void PBLENDVB(X64Reg dest, OpArg arg); + void BLENDVPS(X64Reg dest, OpArg arg); + void BLENDVPD(X64Reg dest, OpArg arg); + void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend); + void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend); + + // SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.) + void ROUNDSS(X64Reg dest, OpArg arg, u8 mode); + void ROUNDSD(X64Reg dest, OpArg arg, u8 mode); + void ROUNDPS(X64Reg dest, OpArg arg, u8 mode); + void ROUNDPD(X64Reg dest, OpArg arg, u8 mode); + + inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); } + inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); } + inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); } + inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); } + + inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); } + inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); } + inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); } + inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); } + + inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); } + inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); } + inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); } + inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); } + + inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); } + inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); } + inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); } + inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); } + + // AVX + void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle); + void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + + void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + + void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg); + + // FMA3 + void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + + // VEX GPR instructions + void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); + void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); + void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); + void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate); + void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); + void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); + void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); + void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); + void BLSR(int bits, X64Reg regOp, OpArg arg); + void BLSMSK(int bits, X64Reg regOp, OpArg arg); + void BLSI(int bits, X64Reg regOp, OpArg arg); + void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); + void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); + + void RDTSC(); + + // Utility functions + // The difference between this and CALL is that this aligns the stack + // where appropriate. + void ABI_CallFunction(const void *func); + template <typename T> + void ABI_CallFunction(T (*func)()) { + ABI_CallFunction((const void *)func); + } + + void ABI_CallFunction(const u8 *func) { + ABI_CallFunction((const void *)func); + } + void ABI_CallFunctionC16(const void *func, u16 param1); + void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2); + + + // These only support u32 parameters, but that's enough for a lot of uses. + // These will destroy the 1 or 2 first "parameter regs". + void ABI_CallFunctionC(const void *func, u32 param1); + void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2); + void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3); + void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3); + void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4); + void ABI_CallFunctionP(const void *func, void *param1); + void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2); + void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3); + void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3); + void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2); + void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3); + void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1); + void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2); + + // Pass a register as a parameter. + void ABI_CallFunctionR(const void *func, X64Reg reg1); + void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2); + + template <typename Tr, typename T1> + void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) { + ABI_CallFunctionC((const void *)func, param1); + } + + // A function that doesn't have any control over what it will do to regs, + // such as the dispatcher, should be surrounded by these. + void ABI_PushAllCalleeSavedRegsAndAdjustStack(); + void ABI_PopAllCalleeSavedRegsAndAdjustStack(); + + // A function that doesn't know anything about it's surroundings, should + // be surrounded by these to establish a safe environment, where it can roam free. + // An example is a backpatch injected function. + void ABI_PushAllCallerSavedRegsAndAdjustStack(); + void ABI_PopAllCallerSavedRegsAndAdjustStack(); + + unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize); + void ABI_AlignStack(unsigned int frameSize); + void ABI_RestoreStack(unsigned int frameSize); + + // Sets up a __cdecl function. + // Only x64 really needs the parameter count. + void ABI_EmitPrologue(int maxCallParams); + void ABI_EmitEpilogue(int maxCallParams); + + #ifdef _M_IX86 + inline int ABI_GetNumXMMRegs() { return 8; } + #else + inline int ABI_GetNumXMMRegs() { return 16; } + #endif +}; // class XEmitter + + +// Everything that needs to generate X86 code should inherit from this. +// You get memory management for free, plus, you can use all the MOV etc functions without +// having to prefix them with gen-> or something similar. + +class XCodeBlock : public CodeBlock<XEmitter> { +public: + void PoisonMemory() override; +}; + +} // namespace |