summaryrefslogtreecommitdiffstats
path: root/src/common/x64/emitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/x64/emitter.cpp')
-rw-r--r--src/common/x64/emitter.cpp2612
1 files changed, 1592 insertions, 1020 deletions
diff --git a/src/common/x64/emitter.cpp b/src/common/x64/emitter.cpp
index 5662f7f86..1a9fd6a6b 100644
--- a/src/common/x64/emitter.cpp
+++ b/src/common/x64/emitter.cpp
@@ -26,179 +26,162 @@
#include "cpu_detect.h"
#include "emitter.h"
-namespace Gen
-{
+namespace Gen {
-struct NormalOpDef
-{
+struct NormalOpDef {
u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext;
};
// 0xCC is code for invalid combination of immediates
-static const NormalOpDef normalops[11] =
-{
- {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, //ADD
- {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, //ADC
+static const NormalOpDef normalops[11] = {
+ {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD
+ {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC
- {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, //SUB
- {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, //SBB
+ {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB
+ {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB
- {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, //AND
- {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, //OR
+ {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND
+ {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR
- {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, //XOR
- {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, //MOV
+ {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR
+ {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV
- {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, //TEST (to == from)
- {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, //CMP
+ {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from)
+ {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP
- {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, //XCHG
+ {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG
};
-enum NormalSSEOps
-{
- sseCMP = 0xC2,
- sseADD = 0x58, //ADD
- sseSUB = 0x5C, //SUB
- sseAND = 0x54, //AND
- sseANDN = 0x55, //ANDN
- sseOR = 0x56,
- sseXOR = 0x57,
- sseMUL = 0x59, //MUL
- sseDIV = 0x5E, //DIV
- sseMIN = 0x5D, //MIN
- sseMAX = 0x5F, //MAX
- sseCOMIS = 0x2F, //COMIS
- sseUCOMIS = 0x2E, //UCOMIS
- sseSQRT = 0x51, //SQRT
- sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
- sseRCP = 0x53, //RCP
- sseMOVAPfromRM = 0x28, //MOVAP from RM
- sseMOVAPtoRM = 0x29, //MOVAP to RM
- sseMOVUPfromRM = 0x10, //MOVUP from RM
- sseMOVUPtoRM = 0x11, //MOVUP to RM
- sseMOVLPfromRM= 0x12,
- sseMOVLPtoRM = 0x13,
- sseMOVHPfromRM= 0x16,
- sseMOVHPtoRM = 0x17,
- sseMOVHLPS = 0x12,
- sseMOVLHPS = 0x16,
+enum NormalSSEOps {
+ sseCMP = 0xC2,
+ sseADD = 0x58, // ADD
+ sseSUB = 0x5C, // SUB
+ sseAND = 0x54, // AND
+ sseANDN = 0x55, // ANDN
+ sseOR = 0x56,
+ sseXOR = 0x57,
+ sseMUL = 0x59, // MUL
+ sseDIV = 0x5E, // DIV
+ sseMIN = 0x5D, // MIN
+ sseMAX = 0x5F, // MAX
+ sseCOMIS = 0x2F, // COMIS
+ sseUCOMIS = 0x2E, // UCOMIS
+ sseSQRT = 0x51, // SQRT
+ sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!)
+ sseRCP = 0x53, // RCP
+ sseMOVAPfromRM = 0x28, // MOVAP from RM
+ sseMOVAPtoRM = 0x29, // MOVAP to RM
+ sseMOVUPfromRM = 0x10, // MOVUP from RM
+ sseMOVUPtoRM = 0x11, // MOVUP to RM
+ sseMOVLPfromRM = 0x12,
+ sseMOVLPtoRM = 0x13,
+ sseMOVHPfromRM = 0x16,
+ sseMOVHPtoRM = 0x17,
+ sseMOVHLPS = 0x12,
+ sseMOVLHPS = 0x16,
sseMOVDQfromRM = 0x6F,
- sseMOVDQtoRM = 0x7F,
- sseMASKMOVDQU = 0xF7,
- sseLDDQU = 0xF0,
- sseSHUF = 0xC6,
- sseMOVNTDQ = 0xE7,
- sseMOVNTP = 0x2B,
- sseHADD = 0x7C,
+ sseMOVDQtoRM = 0x7F,
+ sseMASKMOVDQU = 0xF7,
+ sseLDDQU = 0xF0,
+ sseSHUF = 0xC6,
+ sseMOVNTDQ = 0xE7,
+ sseMOVNTP = 0x2B,
+ sseHADD = 0x7C,
};
-
-void XEmitter::SetCodePtr(u8 *ptr)
-{
+void XEmitter::SetCodePtr(u8* ptr) {
code = ptr;
}
-const u8 *XEmitter::GetCodePtr() const
-{
+const u8* XEmitter::GetCodePtr() const {
return code;
}
-u8 *XEmitter::GetWritableCodePtr()
-{
+u8* XEmitter::GetWritableCodePtr() {
return code;
}
-void XEmitter::Write8(u8 value)
-{
+void XEmitter::Write8(u8 value) {
*code++ = value;
}
-void XEmitter::Write16(u16 value)
-{
+void XEmitter::Write16(u16 value) {
std::memcpy(code, &value, sizeof(u16));
code += sizeof(u16);
}
-void XEmitter::Write32(u32 value)
-{
+void XEmitter::Write32(u32 value) {
std::memcpy(code, &value, sizeof(u32));
code += sizeof(u32);
}
-void XEmitter::Write64(u64 value)
-{
+void XEmitter::Write64(u64 value) {
std::memcpy(code, &value, sizeof(u64));
code += sizeof(u64);
}
-void XEmitter::ReserveCodeSpace(int bytes)
-{
+void XEmitter::ReserveCodeSpace(int bytes) {
for (int i = 0; i < bytes; i++)
*code++ = 0xCC;
}
-const u8 *XEmitter::AlignCode4()
-{
+const u8* XEmitter::AlignCode4() {
int c = int((u64)code & 3);
if (c)
- ReserveCodeSpace(4-c);
+ ReserveCodeSpace(4 - c);
return code;
}
-const u8 *XEmitter::AlignCode16()
-{
+const u8* XEmitter::AlignCode16() {
int c = int((u64)code & 15);
if (c)
- ReserveCodeSpace(16-c);
+ ReserveCodeSpace(16 - c);
return code;
}
-const u8 *XEmitter::AlignCodePage()
-{
+const u8* XEmitter::AlignCodePage() {
int c = int((u64)code & 4095);
if (c)
- ReserveCodeSpace(4096-c);
+ ReserveCodeSpace(4096 - c);
return code;
}
// This operation modifies flags; check to see the flags are locked.
// If the flags are locked, we should immediately and loudly fail before
// causing a subtle JIT bug.
-void XEmitter::CheckFlags()
-{
+void XEmitter::CheckFlags() {
ASSERT_MSG(!flags_locked, "Attempt to modify flags while flags locked!");
}
-void XEmitter::WriteModRM(int mod, int reg, int rm)
-{
+void XEmitter::WriteModRM(int mod, int reg, int rm) {
Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
}
-void XEmitter::WriteSIB(int scale, int index, int base)
-{
+void XEmitter::WriteSIB(int scale, int index, int base) {
Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
}
-void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
-{
- if (customOp == -1) customOp = operandReg;
+void OpArg::WriteRex(XEmitter* emit, int opBits, int bits, int customOp) const {
+ if (customOp == -1)
+ customOp = operandReg;
#ifdef ARCHITECTURE_x86_64
u8 op = 0x40;
// REX.W (whether operation is a 64-bit operation)
- if (opBits == 64) op |= 8;
+ if (opBits == 64)
+ op |= 8;
// REX.R (whether ModR/M reg field refers to R8-R15.
- if (customOp & 8) op |= 4;
+ if (customOp & 8)
+ op |= 4;
// REX.X (whether ModR/M SIB index field refers to R8-R15)
- if (indexReg & 8) op |= 2;
+ if (indexReg & 8)
+ op |= 2;
// REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
- if (offsetOrBaseReg & 8) op |= 1;
+ if (offsetOrBaseReg & 8)
+ op |= 1;
// Write REX if wr have REX bits to write, or if the operation accesses
// SIL, DIL, BPL, or SPL.
- if (op != 0x40 ||
- (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
- (opBits == 8 && (customOp & 0x10c) == 4))
- {
+ if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
+ (opBits == 8 && (customOp & 0x10c) == 4)) {
emit->Write8(op);
// Check the operation doesn't access AH, BH, CH, or DH.
DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0);
@@ -214,8 +197,8 @@ void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
#endif
}
-void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const
-{
+void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
+ int W) const {
int R = !(regOp1 & 8);
int X = !(indexReg & 8);
int B = !(offsetOrBaseReg & 8);
@@ -223,14 +206,11 @@ void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp
int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
// do we need any VEX fields that only appear in the three-byte form?
- if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
- {
+ if (X == 1 && B == 1 && W == 0 && mmmmm == 1) {
u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp;
emit->Write8(0xC5);
emit->Write8(RvvvvLpp);
- }
- else
- {
+ } else {
u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp;
emit->Write8(0xC4);
@@ -239,31 +219,27 @@ void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp
}
}
-void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
- bool warn_64bit_offset) const
-{
+void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg,
+ bool warn_64bit_offset) const {
if (_operandReg == INVALID_REG)
- _operandReg = (X64Reg)this->operandReg;
+ _operandReg = (X64Reg) this->operandReg;
int mod = 0;
int ireg = indexReg;
bool SIB = false;
int _offsetOrBaseReg = this->offsetOrBaseReg;
- if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
+ if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address
{
// Oh, RIP addressing.
_offsetOrBaseReg = 5;
emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
- //TODO : add some checks
+// TODO : add some checks
#ifdef ARCHITECTURE_x86_64
u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
s64 distance = (s64)offset - (s64)ripAddr;
- ASSERT_MSG(
- (distance < 0x80000000LL &&
- distance >= -0x80000000LL) ||
- !warn_64bit_offset,
- "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")",
- ripAddr, offset);
+ ASSERT_MSG((distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset,
+ "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr,
+ offset);
s32 offs = (s32)distance;
emit->Write32((u32)offs);
#else
@@ -272,66 +248,49 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
return;
}
- if (scale == 0)
- {
+ if (scale == 0) {
// Oh, no memory, Just a reg.
- mod = 3; //11
- }
- else if (scale >= 1)
- {
- //Ah good, no scaling.
- if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
- {
- //Okay, we're good. No SIB necessary.
+ mod = 3; // 11
+ } else if (scale >= 1) {
+ // Ah good, no scaling.
+ if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) {
+ // Okay, we're good. No SIB necessary.
int ioff = (int)offset;
- if (ioff == 0)
- {
+ if (ioff == 0) {
mod = 0;
+ } else if (ioff < -128 || ioff > 127) {
+ mod = 2; // 32-bit displacement
+ } else {
+ mod = 1; // 8-bit displacement
}
- else if (ioff<-128 || ioff>127)
- {
- mod = 2; //32-bit displacement
- }
- else
- {
- mod = 1; //8-bit displacement
- }
- }
- else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
- {
+ } else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) {
SIB = true;
mod = 0;
_offsetOrBaseReg = 5;
- }
- else //if (scale != SCALE_ATREG)
+ } else // if (scale != SCALE_ATREG)
{
- if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
+ if ((_offsetOrBaseReg & 7) == 4) // this would occupy the SIB encoding :(
{
- //So we have to fake it with SIB encoding :(
+ // So we have to fake it with SIB encoding :(
SIB = true;
}
- if (scale >= SCALE_1 && scale < SCALE_ATREG)
- {
+ if (scale >= SCALE_1 && scale < SCALE_ATREG) {
SIB = true;
}
- if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
- {
+ if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4)) {
SIB = true;
ireg = _offsetOrBaseReg;
}
- //Okay, we're fine. Just disp encoding.
- //We need displacement. Which size?
+ // Okay, we're fine. Just disp encoding.
+ // We need displacement. Which size?
int ioff = (int)(s64)offset;
- if (ioff < -128 || ioff > 127)
- {
- mod = 2; //32-bit displacement
- }
- else
- {
- mod = 1; //8-bit displacement
+ if (ioff < -128 || ioff > 127) {
+ mod = 2; // 32-bit displacement
+ } else {
+ mod = 1; // 8-bit displacement
}
}
}
@@ -343,36 +302,55 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
oreg = 4;
// TODO(ector): WTF is this if about? I don't remember writing it :-)
- //if (RIP)
+ // if (RIP)
// oreg = 5;
- emit->WriteModRM(mod, _operandReg&7, oreg&7);
+ emit->WriteModRM(mod, _operandReg & 7, oreg & 7);
- if (SIB)
- {
- //SIB byte
+ if (SIB) {
+ // SIB byte
int ss;
- switch (scale)
- {
- case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP
- case SCALE_1: ss = 0; break;
- case SCALE_2: ss = 1; break;
- case SCALE_4: ss = 2; break;
- case SCALE_8: ss = 3; break;
- case SCALE_NOBASE_2: ss = 1; break;
- case SCALE_NOBASE_4: ss = 2; break;
- case SCALE_NOBASE_8: ss = 3; break;
- case SCALE_ATREG: ss = 0; break;
- default: ASSERT_MSG(0, "Invalid scale for SIB byte"); ss = 0; break;
+ switch (scale) {
+ case SCALE_NONE:
+ _offsetOrBaseReg = 4;
+ ss = 0;
+ break; // RSP
+ case SCALE_1:
+ ss = 0;
+ break;
+ case SCALE_2:
+ ss = 1;
+ break;
+ case SCALE_4:
+ ss = 2;
+ break;
+ case SCALE_8:
+ ss = 3;
+ break;
+ case SCALE_NOBASE_2:
+ ss = 1;
+ break;
+ case SCALE_NOBASE_4:
+ ss = 2;
+ break;
+ case SCALE_NOBASE_8:
+ ss = 3;
+ break;
+ case SCALE_ATREG:
+ ss = 0;
+ break;
+ default:
+ ASSERT_MSG(0, "Invalid scale for SIB byte");
+ ss = 0;
+ break;
}
- emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7)));
+ emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7)));
}
- if (mod == 1) //8-bit disp
+ if (mod == 1) // 8-bit disp
{
emit->Write8((u8)(s8)(s32)offset);
- }
- else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp
+ } else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp
{
emit->Write32((u32)offset);
}
@@ -382,8 +360,7 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
// R = register# upper bit
// X = scale amnt upper bit
// B = base register# upper bit
-void XEmitter::Rex(int w, int r, int x, int b)
-{
+void XEmitter::Rex(int w, int r, int x, int b) {
w = w ? 1 : 0;
r = r ? 1 : 0;
x = x ? 1 : 0;
@@ -393,70 +370,60 @@ void XEmitter::Rex(int w, int r, int x, int b)
Write8(rx);
}
-void XEmitter::JMP(const u8* addr, bool force5Bytes)
-{
+void XEmitter::JMP(const u8* addr, bool force5Bytes) {
u64 fn = (u64)addr;
- if (!force5Bytes)
- {
+ if (!force5Bytes) {
s64 distance = (s64)(fn - ((u64)code + 2));
ASSERT_MSG(distance >= -0x80 && distance < 0x80,
- "Jump target too far away, needs force5Bytes = true");
- //8 bits will do
+ "Jump target too far away, needs force5Bytes = true");
+ // 8 bits will do
Write8(0xEB);
Write8((u8)(s8)distance);
- }
- else
- {
+ } else {
s64 distance = (s64)(fn - ((u64)code + 5));
- ASSERT_MSG(
- distance >= -0x80000000LL && distance < 0x80000000LL,
- "Jump target too far away, needs indirect register");
+ ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
Write8(0xE9);
Write32((u32)(s32)distance);
}
}
-void XEmitter::JMPptr(const OpArg& arg2)
-{
+void XEmitter::JMPptr(const OpArg& arg2) {
OpArg arg = arg2;
- if (arg.IsImm()) ASSERT_MSG(0, "JMPptr - Imm argument");
+ if (arg.IsImm())
+ ASSERT_MSG(0, "JMPptr - Imm argument");
arg.operandReg = 4;
arg.WriteRex(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
-//Can be used to trap other processors, before overwriting their code
+// Can be used to trap other processors, before overwriting their code
// not used in dolphin
-void XEmitter::JMPself()
-{
+void XEmitter::JMPself() {
Write8(0xEB);
Write8(0xFE);
}
-void XEmitter::CALLptr(OpArg arg)
-{
- if (arg.IsImm()) ASSERT_MSG(0, "CALLptr - Imm argument");
+void XEmitter::CALLptr(OpArg arg) {
+ if (arg.IsImm())
+ ASSERT_MSG(0, "CALLptr - Imm argument");
arg.operandReg = 2;
arg.WriteRex(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
-void XEmitter::CALL(const void* fnptr)
-{
+void XEmitter::CALL(const void* fnptr) {
u64 distance = u64(fnptr) - (u64(code) + 5);
- ASSERT_MSG(
- distance < 0x0000000080000000ULL ||
- distance >= 0xFFFFFFFF80000000ULL,
- "CALL out of range (%p calls %p)", code, fnptr);
+ ASSERT_MSG(distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL,
+ "CALL out of range (%p calls %p)", code, fnptr);
Write8(0xE8);
Write32(u32(distance));
}
-FixupBranch XEmitter::CALL()
-{
+FixupBranch XEmitter::CALL() {
FixupBranch branch;
branch.type = 1;
branch.ptr = code + 5;
@@ -467,38 +434,30 @@ FixupBranch XEmitter::CALL()
return branch;
}
-FixupBranch XEmitter::J(bool force5bytes)
-{
+FixupBranch XEmitter::J(bool force5bytes) {
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 5 : 2);
- if (!force5bytes)
- {
- //8 bits will do
+ if (!force5bytes) {
+ // 8 bits will do
Write8(0xEB);
Write8(0);
- }
- else
- {
+ } else {
Write8(0xE9);
Write32(0);
}
return branch;
}
-FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
-{
+FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes) {
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 6 : 2);
- if (!force5bytes)
- {
- //8 bits will do
+ if (!force5bytes) {
+ // 8 bits will do
Write8(0x70 + conditionCode);
Write8(0);
- }
- else
- {
+ } else {
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32(0);
@@ -506,198 +465,268 @@ FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
return branch;
}
-void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes)
-{
+void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes) {
u64 fn = (u64)addr;
s64 distance = (s64)(fn - ((u64)code + 2));
- if (distance < -0x80 || distance >= 0x80 || force5bytes)
- {
+ if (distance < -0x80 || distance >= 0x80 || force5bytes) {
distance = (s64)(fn - ((u64)code + 6));
- ASSERT_MSG(
- distance >= -0x80000000LL && distance < 0x80000000LL,
- "Jump target too far away, needs indirect register");
+ ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32((u32)(s32)distance);
- }
- else
- {
+ } else {
Write8(0x70 + conditionCode);
Write8((u8)(s8)distance);
}
}
-void XEmitter::SetJumpTarget(const FixupBranch& branch)
-{
- if (branch.type == 0)
- {
+void XEmitter::SetJumpTarget(const FixupBranch& branch) {
+ if (branch.type == 0) {
s64 distance = (s64)(code - branch.ptr);
- ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
+ ASSERT_MSG(distance >= -0x80 && distance < 0x80,
+ "Jump target too far away, needs force5Bytes = true");
branch.ptr[-1] = (u8)(s8)distance;
- }
- else if (branch.type == 1)
- {
+ } else if (branch.type == 1) {
s64 distance = (s64)(code - branch.ptr);
- ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register");
+ ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
((s32*)branch.ptr)[-1] = (s32)distance;
}
}
-void XEmitter::SetJumpTarget(const FixupBranch& branch, const u8* target)
-{
- if (branch.type == 0)
- {
+void XEmitter::SetJumpTarget(const FixupBranch& branch, const u8* target) {
+ if (branch.type == 0) {
s64 distance = (s64)(target - branch.ptr);
- ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
+ ASSERT_MSG(distance >= -0x80 && distance < 0x80,
+ "Jump target too far away, needs force5Bytes = true");
branch.ptr[-1] = (u8)(s8)distance;
- }
- else if (branch.type == 1)
- {
+ } else if (branch.type == 1) {
s64 distance = (s64)(target - branch.ptr);
- ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register");
+ ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
((s32*)branch.ptr)[-1] = (s32)distance;
}
}
-//Single byte opcodes
-//There is no PUSHAD/POPAD in 64-bit mode.
-void XEmitter::INT3() {Write8(0xCC);}
-void XEmitter::RET() {Write8(0xC3);}
-void XEmitter::RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
+// Single byte opcodes
+// There is no PUSHAD/POPAD in 64-bit mode.
+void XEmitter::INT3() {
+ Write8(0xCC);
+}
+void XEmitter::RET() {
+ Write8(0xC3);
+}
+void XEmitter::RET_FAST() {
+ Write8(0xF3);
+ Write8(0xC3);
+} // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a
+ // ret
// The first sign of decadence: optimized NOPs.
-void XEmitter::NOP(size_t size)
-{
+void XEmitter::NOP(size_t size) {
DEBUG_ASSERT((int)size > 0);
- while (true)
- {
- switch (size)
- {
+ while (true) {
+ switch (size) {
case 0:
return;
case 1:
Write8(0x90);
return;
case 2:
- Write8(0x66); Write8(0x90);
+ Write8(0x66);
+ Write8(0x90);
return;
case 3:
- Write8(0x0F); Write8(0x1F); Write8(0x00);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x00);
return;
case 4:
- Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x40);
+ Write8(0x00);
return;
case 5:
- Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x44);
+ Write8(0x00);
Write8(0x00);
return;
case 6:
- Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44);
- Write8(0x00); Write8(0x00);
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x44);
+ Write8(0x00);
+ Write8(0x00);
return;
case 7:
- Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00);
- Write8(0x00); Write8(0x00); Write8(0x00);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x80);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
return;
case 8:
- Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00);
- Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
return;
case 9:
- Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84);
- Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
Write8(0x00);
return;
case 10:
- Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F);
- Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00);
- Write8(0x00); Write8(0x00);
+ Write8(0x66);
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
return;
default:
// Even though x86 instructions are allowed to be up to 15 bytes long,
// AMD advises against using NOPs longer than 11 bytes because they
// carry a performance penalty on CPUs older than AMD family 16h.
- Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F);
- Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00);
- Write8(0x00); Write8(0x00); Write8(0x00);
+ Write8(0x66);
+ Write8(0x66);
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
size -= 11;
continue;
}
}
}
-void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
-void XEmitter::CLC() {CheckFlags(); Write8(0xF8);} //clear carry
-void XEmitter::CMC() {CheckFlags(); Write8(0xF5);} //flip carry
-void XEmitter::STC() {CheckFlags(); Write8(0xF9);} //set carry
+void XEmitter::PAUSE() {
+ Write8(0xF3);
+ NOP();
+} // use in tight spinloops for energy saving on some cpu
+void XEmitter::CLC() {
+ CheckFlags();
+ Write8(0xF8);
+} // clear carry
+void XEmitter::CMC() {
+ CheckFlags();
+ Write8(0xF5);
+} // flip carry
+void XEmitter::STC() {
+ CheckFlags();
+ Write8(0xF9);
+} // set carry
-//TODO: xchg ah, al ???
-void XEmitter::XCHG_AHAL()
-{
+// TODO: xchg ah, al ???
+void XEmitter::XCHG_AHAL() {
Write8(0x86);
Write8(0xe0);
// alt. 86 c4
}
-//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
-void XEmitter::LAHF() {Write8(0x9F);}
-void XEmitter::SAHF() {CheckFlags(); Write8(0x9E);}
+// These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
+void XEmitter::LAHF() {
+ Write8(0x9F);
+}
+void XEmitter::SAHF() {
+ CheckFlags();
+ Write8(0x9E);
+}
-void XEmitter::PUSHF() {Write8(0x9C);}
-void XEmitter::POPF() {CheckFlags(); Write8(0x9D);}
+void XEmitter::PUSHF() {
+ Write8(0x9C);
+}
+void XEmitter::POPF() {
+ CheckFlags();
+ Write8(0x9D);
+}
-void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
-void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
-void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
+void XEmitter::LFENCE() {
+ Write8(0x0F);
+ Write8(0xAE);
+ Write8(0xE8);
+}
+void XEmitter::MFENCE() {
+ Write8(0x0F);
+ Write8(0xAE);
+ Write8(0xF0);
+}
+void XEmitter::SFENCE() {
+ Write8(0x0F);
+ Write8(0xAE);
+ Write8(0xF8);
+}
-void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
-{
+void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) {
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte + ((int)reg & 7));
}
-void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
-{
+void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) {
if (bits == 16)
Write8(0x66);
- Rex(bits==64, 0, 0, (int)reg >> 3);
+ Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte1);
Write8(byte2 + ((int)reg & 7));
}
-void XEmitter::CWD(int bits)
-{
+void XEmitter::CWD(int bits) {
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, 0);
Write8(0x99);
}
-void XEmitter::CBW(int bits)
-{
+void XEmitter::CBW(int bits) {
if (bits == 8)
Write8(0x66);
Rex(bits == 32, 0, 0, 0);
Write8(0x98);
}
-//Simple opcodes
-
+// Simple opcodes
-//push/pop do not need wide to be 64-bit
-void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
-void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);}
+// push/pop do not need wide to be 64-bit
+void XEmitter::PUSH(X64Reg reg) {
+ WriteSimple1Byte(32, 0x50, reg);
+}
+void XEmitter::POP(X64Reg reg) {
+ WriteSimple1Byte(32, 0x58, reg);
+}
-void XEmitter::PUSH(int bits, const OpArg& reg)
-{
+void XEmitter::PUSH(int bits, const OpArg& reg) {
if (reg.IsSimpleReg())
PUSH(reg.GetSimpleReg());
- else if (reg.IsImm())
- {
- switch (reg.GetImmBits())
- {
+ else if (reg.IsImm()) {
+ switch (reg.GetImmBits()) {
case 8:
Write8(0x6A);
Write8((u8)(s8)reg.offset);
@@ -715,9 +744,7 @@ void XEmitter::PUSH(int bits, const OpArg& reg)
ASSERT_MSG(0, "PUSH - Bad imm bits");
break;
}
- }
- else
- {
+ } else {
if (bits == 16)
Write8(0x66);
reg.WriteRex(this, bits, bits);
@@ -726,44 +753,33 @@ void XEmitter::PUSH(int bits, const OpArg& reg)
}
}
-void XEmitter::POP(int /*bits*/, const OpArg& reg)
-{
+void XEmitter::POP(int /*bits*/, const OpArg& reg) {
if (reg.IsSimpleReg())
POP(reg.GetSimpleReg());
else
ASSERT_MSG(0, "POP - Unsupported encoding");
}
-void XEmitter::BSWAP(int bits, X64Reg reg)
-{
- if (bits >= 32)
- {
+void XEmitter::BSWAP(int bits, X64Reg reg) {
+ if (bits >= 32) {
WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
- }
- else if (bits == 16)
- {
+ } else if (bits == 16) {
ROL(16, R(reg), Imm8(8));
- }
- else if (bits == 8)
- {
+ } else if (bits == 8) {
// Do nothing - can't bswap a single byte...
- }
- else
- {
+ } else {
ASSERT_MSG(0, "BSWAP - Wrong number of bits");
}
}
// Undefined opcode - reserved
// If we ever need a way to always cause a non-breakpoint hard exception...
-void XEmitter::UD2()
-{
+void XEmitter::UD2() {
Write8(0x0F);
Write8(0x0B);
}
-void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
-{
+void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) {
ASSERT_MSG(!arg.IsImm(), "PREFETCH - Imm argument");
arg.operandReg = (u8)level;
arg.WriteRex(this, 0, 0);
@@ -772,8 +788,7 @@ void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
arg.WriteRest(this);
}
-void XEmitter::SETcc(CCFlags flag, OpArg dest)
-{
+void XEmitter::SETcc(CCFlags flag, OpArg dest) {
ASSERT_MSG(!dest.IsImm(), "SETcc - Imm argument");
dest.operandReg = 0;
dest.WriteRex(this, 0, 8);
@@ -782,8 +797,7 @@ void XEmitter::SETcc(CCFlags flag, OpArg dest)
dest.WriteRest(this);
}
-void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
-{
+void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) {
ASSERT_MSG(!src.IsImm(), "CMOVcc - Imm argument");
ASSERT_MSG(bits != 8, "CMOVcc - 8 bits unsupported");
if (bits == 16)
@@ -795,34 +809,41 @@ void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
src.WriteRest(this);
}
-void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
-{
+void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) {
ASSERT_MSG(!src.IsImm(), "WriteMulDivType - Imm argument");
CheckFlags();
src.operandReg = ext;
if (bits == 16)
Write8(0x66);
src.WriteRex(this, bits, bits, 0);
- if (bits == 8)
- {
+ if (bits == 8) {
Write8(0xF6);
- }
- else
- {
+ } else {
Write8(0xF7);
}
src.WriteRest(this);
}
-void XEmitter::MUL(int bits, const OpArg& src) {WriteMulDivType(bits, src, 4);}
-void XEmitter::DIV(int bits, const OpArg& src) {WriteMulDivType(bits, src, 6);}
-void XEmitter::IMUL(int bits, const OpArg& src) {WriteMulDivType(bits, src, 5);}
-void XEmitter::IDIV(int bits, const OpArg& src) {WriteMulDivType(bits, src, 7);}
-void XEmitter::NEG(int bits, const OpArg& src) {WriteMulDivType(bits, src, 3);}
-void XEmitter::NOT(int bits, const OpArg& src) {WriteMulDivType(bits, src, 2);}
+void XEmitter::MUL(int bits, const OpArg& src) {
+ WriteMulDivType(bits, src, 4);
+}
+void XEmitter::DIV(int bits, const OpArg& src) {
+ WriteMulDivType(bits, src, 6);
+}
+void XEmitter::IMUL(int bits, const OpArg& src) {
+ WriteMulDivType(bits, src, 5);
+}
+void XEmitter::IDIV(int bits, const OpArg& src) {
+ WriteMulDivType(bits, src, 7);
+}
+void XEmitter::NEG(int bits, const OpArg& src) {
+ WriteMulDivType(bits, src, 3);
+}
+void XEmitter::NOT(int bits, const OpArg& src) {
+ WriteMulDivType(bits, src, 2);
+}
-void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
-{
+void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) {
ASSERT_MSG(!src.IsImm(), "WriteBitSearchType - Imm argument");
CheckFlags();
src.operandReg = (u8)dest;
@@ -836,36 +857,35 @@ void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bo
src.WriteRest(this);
}
-void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src)
-{
+void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src) {
if (bits <= 16)
ASSERT_MSG(0, "MOVNTI - bits<=16");
WriteBitSearchType(bits, src, dest, 0xC3);
}
-void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBC);} // Bottom bit to top bit
-void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBD);} // Top bit to bottom bit
+void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) {
+ WriteBitSearchType(bits, dest, src, 0xBC);
+} // Bottom bit to top bit
+void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) {
+ WriteBitSearchType(bits, dest, src, 0xBD);
+} // Top bit to bottom bit
-void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src)
-{
+void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src) {
CheckFlags();
if (!Common::GetCPUCaps().bmi1)
ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
WriteBitSearchType(bits, dest, src, 0xBC, true);
}
-void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src)
-{
+void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src) {
CheckFlags();
if (!Common::GetCPUCaps().lzcnt)
ASSERT_MSG(0, "Trying to use LZCNT on a system that doesn't support it. Bad programmer.");
WriteBitSearchType(bits, dest, src, 0xBD, true);
}
-void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
-{
+void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) {
ASSERT_MSG(!src.IsImm(), "MOVSX - Imm argument");
- if (dbits == sbits)
- {
+ if (dbits == sbits) {
MOV(dbits, R(dest), src);
return;
}
@@ -873,66 +893,49 @@ void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
if (dbits == 16)
Write8(0x66);
src.WriteRex(this, dbits, sbits);
- if (sbits == 8)
- {
+ if (sbits == 8) {
Write8(0x0F);
Write8(0xBE);
- }
- else if (sbits == 16)
- {
+ } else if (sbits == 16) {
Write8(0x0F);
Write8(0xBF);
- }
- else if (sbits == 32 && dbits == 64)
- {
+ } else if (sbits == 32 && dbits == 64) {
Write8(0x63);
- }
- else
- {
+ } else {
Crash();
}
src.WriteRest(this);
}
-void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
-{
+void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) {
ASSERT_MSG(!src.IsImm(), "MOVZX - Imm argument");
- if (dbits == sbits)
- {
+ if (dbits == sbits) {
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16)
Write8(0x66);
- //the 32bit result is automatically zero extended to 64bit
+ // the 32bit result is automatically zero extended to 64bit
src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits);
- if (sbits == 8)
- {
+ if (sbits == 8) {
Write8(0x0F);
Write8(0xB6);
- }
- else if (sbits == 16)
- {
+ } else if (sbits == 16) {
Write8(0x0F);
Write8(0xB7);
- }
- else if (sbits == 32 && dbits == 64)
- {
+ } else if (sbits == 32 && dbits == 64) {
Write8(0x8B);
- }
- else
- {
+ } else {
ASSERT_MSG(0, "MOVZX - Invalid size");
}
src.WriteRest(this);
}
-void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src)
-{
- ASSERT_MSG(Common::GetCPUCaps().movbe, "Generating MOVBE on a system that does not support it.");
- if (bits == 8)
- {
+void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src) {
+ ASSERT_MSG(Common::GetCPUCaps().movbe,
+ "Generating MOVBE on a system that does not support it.");
+ if (bits == 8) {
MOV(bits, dest, src);
return;
}
@@ -940,71 +943,60 @@ void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src)
if (bits == 16)
Write8(0x66);
- if (dest.IsSimpleReg())
- {
+ if (dest.IsSimpleReg()) {
ASSERT_MSG(!src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem");
src.WriteRex(this, bits, bits, dest.GetSimpleReg());
- Write8(0x0F); Write8(0x38); Write8(0xF0);
+ Write8(0x0F);
+ Write8(0x38);
+ Write8(0xF0);
src.WriteRest(this, 0, dest.GetSimpleReg());
- }
- else if (src.IsSimpleReg())
- {
+ } else if (src.IsSimpleReg()) {
ASSERT_MSG(!dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem");
dest.WriteRex(this, bits, bits, src.GetSimpleReg());
- Write8(0x0F); Write8(0x38); Write8(0xF1);
+ Write8(0x0F);
+ Write8(0x38);
+ Write8(0xF1);
dest.WriteRest(this, 0, src.GetSimpleReg());
- }
- else
- {
+ } else {
ASSERT_MSG(0, "MOVBE: Not loading or storing to mem");
}
}
-
-void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
-{
+void XEmitter::LEA(int bits, X64Reg dest, OpArg src) {
ASSERT_MSG(!src.IsImm(), "LEA - Imm argument");
src.operandReg = (u8)dest;
if (bits == 16)
- Write8(0x66); //TODO: performance warning
+ Write8(0x66); // TODO: performance warning
src.WriteRex(this, bits, bits);
Write8(0x8D);
src.WriteRest(this, 0, INVALID_REG, bits == 64);
}
-//shift can be either imm8 or cl
-void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext)
-{
+// shift can be either imm8 or cl
+void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext) {
CheckFlags();
bool writeImm = false;
- if (dest.IsImm())
- {
+ if (dest.IsImm()) {
ASSERT_MSG(0, "WriteShift - can't shift imms");
}
- if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
- {
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
+ (shift.IsImm() && shift.GetImmBits() != 8)) {
ASSERT_MSG(0, "WriteShift - illegal argument");
}
dest.operandReg = ext;
if (bits == 16)
Write8(0x66);
dest.WriteRex(this, bits, bits, 0);
- if (shift.GetImmBits() == 8)
- {
- //ok an imm
+ if (shift.GetImmBits() == 8) {
+ // ok an imm
u8 imm = (u8)shift.offset;
- if (imm == 1)
- {
+ if (imm == 1) {
Write8(bits == 8 ? 0xD0 : 0xD1);
- }
- else
- {
+ } else {
writeImm = true;
Write8(bits == 8 ? 0xC0 : 0xC1);
}
- }
- else
- {
+ } else {
Write8(bits == 8 ? 0xD2 : 0xD3);
}
dest.WriteRest(this, writeImm ? 1 : 0);
@@ -1014,116 +1006,125 @@ void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext)
// large rotates and shift are slower on intel than amd
// intel likes to rotate by 1, and the op is smaller too
-void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 0);}
-void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 1);}
-void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 2);}
-void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 3);}
-void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 4);}
-void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 5);}
-void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 7);}
+void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) {
+ WriteShift(bits, dest, shift, 0);
+}
+void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift) {
+ WriteShift(bits, dest, shift, 1);
+}
+void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) {
+ WriteShift(bits, dest, shift, 2);
+}
+void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) {
+ WriteShift(bits, dest, shift, 3);
+}
+void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) {
+ WriteShift(bits, dest, shift, 4);
+}
+void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) {
+ WriteShift(bits, dest, shift, 5);
+}
+void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) {
+ WriteShift(bits, dest, shift, 7);
+}
// index can be either imm8 or register, don't use memory destination because it's slow
-void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext)
-{
+void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext) {
CheckFlags();
- if (dest.IsImm())
- {
+ if (dest.IsImm()) {
ASSERT_MSG(0, "WriteBitTest - can't test imms");
}
- if ((index.IsImm() && index.GetImmBits() != 8))
- {
+ if ((index.IsImm() && index.GetImmBits() != 8)) {
ASSERT_MSG(0, "WriteBitTest - illegal argument");
}
if (bits == 16)
Write8(0x66);
- if (index.IsImm())
- {
+ if (index.IsImm()) {
dest.WriteRex(this, bits, bits);
- Write8(0x0F); Write8(0xBA);
+ Write8(0x0F);
+ Write8(0xBA);
dest.WriteRest(this, 1, (X64Reg)ext);
Write8((u8)index.offset);
- }
- else
- {
+ } else {
X64Reg operand = index.GetSimpleReg();
dest.WriteRex(this, bits, bits, operand);
- Write8(0x0F); Write8(0x83 + 8*ext);
+ Write8(0x0F);
+ Write8(0x83 + 8 * ext);
dest.WriteRest(this, 1, operand);
}
}
-void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 4);}
-void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 5);}
-void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 6);}
-void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 7);}
+void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) {
+ WriteBitTest(bits, dest, index, 4);
+}
+void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) {
+ WriteBitTest(bits, dest, index, 5);
+}
+void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) {
+ WriteBitTest(bits, dest, index, 6);
+}
+void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) {
+ WriteBitTest(bits, dest, index, 7);
+}
-//shift can be either imm8 or cl
-void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
-{
+// shift can be either imm8 or cl
+void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) {
CheckFlags();
- if (dest.IsImm())
- {
+ if (dest.IsImm()) {
ASSERT_MSG(0, "SHRD - can't use imms as destination");
}
- if (!src.IsSimpleReg())
- {
+ if (!src.IsSimpleReg()) {
ASSERT_MSG(0, "SHRD - must use simple register as source");
}
- if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
- {
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
+ (shift.IsImm() && shift.GetImmBits() != 8)) {
ASSERT_MSG(0, "SHRD - illegal shift");
}
if (bits == 16)
Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteRex(this, bits, bits, operand);
- if (shift.GetImmBits() == 8)
- {
- Write8(0x0F); Write8(0xAC);
+ if (shift.GetImmBits() == 8) {
+ Write8(0x0F);
+ Write8(0xAC);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
- }
- else
- {
- Write8(0x0F); Write8(0xAD);
+ } else {
+ Write8(0x0F);
+ Write8(0xAD);
dest.WriteRest(this, 0, operand);
}
}
-void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
-{
+void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) {
CheckFlags();
- if (dest.IsImm())
- {
+ if (dest.IsImm()) {
ASSERT_MSG(0, "SHLD - can't use imms as destination");
}
- if (!src.IsSimpleReg())
- {
+ if (!src.IsSimpleReg()) {
ASSERT_MSG(0, "SHLD - must use simple register as source");
}
- if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
- {
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
+ (shift.IsImm() && shift.GetImmBits() != 8)) {
ASSERT_MSG(0, "SHLD - illegal shift");
}
if (bits == 16)
Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteRex(this, bits, bits, operand);
- if (shift.GetImmBits() == 8)
- {
- Write8(0x0F); Write8(0xA4);
+ if (shift.GetImmBits() == 8) {
+ Write8(0x0F);
+ Write8(0xA4);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
- }
- else
- {
- Write8(0x0F); Write8(0xA5);
+ } else {
+ Write8(0x0F);
+ Write8(0xA5);
dest.WriteRest(this, 0, operand);
}
}
-void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits)
-{
+void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits) {
if (bits == 16)
emit->Write8(0x66);
@@ -1133,12 +1134,11 @@ void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bit
WriteRest(emit);
}
-//operand can either be immediate or register
-void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const
-{
+// operand can either be immediate or register
+void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand,
+ int bits) const {
X64Reg _operandReg;
- if (IsImm())
- {
+ if (IsImm()) {
ASSERT_MSG(0, "WriteNormalOp - Imm argument, wrong order");
}
@@ -1147,27 +1147,22 @@ void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& o
int immToWrite = 0;
- if (operand.IsImm())
- {
+ if (operand.IsImm()) {
WriteRex(emit, bits, bits);
- if (!toRM)
- {
+ if (!toRM) {
ASSERT_MSG(0, "WriteNormalOp - Writing to Imm (!toRM)");
}
- if (operand.scale == SCALE_IMM8 && bits == 8)
- {
+ if (operand.scale == SCALE_IMM8 && bits == 8) {
// op al, imm8
- if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC)
- {
+ if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC) {
emit->Write8(normalops[op].eaximm8);
emit->Write8((u8)operand.offset);
return;
}
// mov reg, imm8
- if (!scale && op == nrmMOV)
- {
+ if (!scale && op == nrmMOV) {
emit->Write8(0xB0 + (offsetOrBaseReg & 7));
emit->Write8((u8)operand.offset);
return;
@@ -1175,26 +1170,20 @@ void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& o
// op r/m8, imm8
emit->Write8(normalops[op].imm8);
immToWrite = 8;
- }
- else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
- (operand.scale == SCALE_IMM32 && bits == 32) ||
- (operand.scale == SCALE_IMM32 && bits == 64))
- {
+ } else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
+ (operand.scale == SCALE_IMM32 && bits == 32) ||
+ (operand.scale == SCALE_IMM32 && bits == 64)) {
// Try to save immediate size if we can, but first check to see
// if the instruction supports simm8.
// op r/m, imm8
if (normalops[op].simm8 != 0xCC &&
((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) ||
- (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset)))
- {
+ (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) {
emit->Write8(normalops[op].simm8);
immToWrite = 8;
- }
- else
- {
+ } else {
// mov reg, imm
- if (!scale && op == nrmMOV && bits != 64)
- {
+ if (!scale && op == nrmMOV && bits != 64) {
emit->Write8(0xB8 + (offsetOrBaseReg & 7));
if (bits == 16)
emit->Write16((u16)operand.offset);
@@ -1203,8 +1192,7 @@ void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& o
return;
}
// op eax, imm
- if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC)
- {
+ if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC) {
emit->Write8(normalops[op].eaximm32);
if (bits == 16)
emit->Write16((u16)operand.offset);
@@ -1216,54 +1204,41 @@ void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& o
emit->Write8(normalops[op].imm32);
immToWrite = bits == 16 ? 16 : 32;
}
- }
- else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
- (operand.scale == SCALE_IMM8 && bits == 32) ||
- (operand.scale == SCALE_IMM8 && bits == 64))
- {
+ } else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
+ (operand.scale == SCALE_IMM8 && bits == 32) ||
+ (operand.scale == SCALE_IMM8 && bits == 64)) {
// op r/m, imm8
emit->Write8(normalops[op].simm8);
immToWrite = 8;
- }
- else if (operand.scale == SCALE_IMM64 && bits == 64)
- {
- if (scale)
- {
+ } else if (operand.scale == SCALE_IMM64 && bits == 64) {
+ if (scale) {
ASSERT_MSG(0, "WriteNormalOp - MOV with 64-bit imm requres register destination");
}
// mov reg64, imm64
- else if (op == nrmMOV)
- {
+ else if (op == nrmMOV) {
emit->Write8(0xB8 + (offsetOrBaseReg & 7));
emit->Write64((u64)operand.offset);
return;
}
ASSERT_MSG(0, "WriteNormalOp - Only MOV can take 64-bit imm");
- }
- else
- {
+ } else {
ASSERT_MSG(0, "WriteNormalOp - Unhandled case");
}
- _operandReg = (X64Reg)normalops[op].ext; //pass extension in REG of ModRM
- }
- else
- {
+ _operandReg = (X64Reg)normalops[op].ext; // pass extension in REG of ModRM
+ } else {
_operandReg = (X64Reg)operand.offsetOrBaseReg;
WriteRex(emit, bits, bits, _operandReg);
// op r/m, reg
- if (toRM)
- {
+ if (toRM) {
emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32);
}
// op reg, r/m
- else
- {
+ else {
emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32);
}
}
WriteRest(emit, immToWrite >> 3, _operandReg);
- switch (immToWrite)
- {
+ switch (immToWrite) {
case 0:
break;
case 8:
@@ -1280,66 +1255,84 @@ void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& o
}
}
-void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2)
-{
- if (a1.IsImm())
- {
- //Booh! Can't write to an imm
+void XEmitter::WriteNormalOp(XEmitter* emit, int bits, NormalOp op, const OpArg& a1,
+ const OpArg& a2) {
+ if (a1.IsImm()) {
+ // Booh! Can't write to an imm
ASSERT_MSG(0, "WriteNormalOp - a1 cannot be imm");
return;
}
- if (a2.IsImm())
- {
+ if (a2.IsImm()) {
a1.WriteNormalOp(emit, true, op, a2, bits);
- }
- else
- {
- if (a1.IsSimpleReg())
- {
+ } else {
+ if (a1.IsSimpleReg()) {
a2.WriteNormalOp(emit, false, op, a1, bits);
- }
- else
- {
- ASSERT_MSG(a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory");
+ } else {
+ ASSERT_MSG(a2.IsSimpleReg() || a2.IsImm(),
+ "WriteNormalOp - a1 and a2 cannot both be memory");
a1.WriteNormalOp(emit, true, op, a2, bits);
}
}
}
-void XEmitter::ADD (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);}
-void XEmitter::ADC (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);}
-void XEmitter::SUB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);}
-void XEmitter::SBB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);}
-void XEmitter::AND (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);}
-void XEmitter::OR (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);}
-void XEmitter::XOR (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);}
-void XEmitter::MOV (int bits, const OpArg& a1, const OpArg& a2)
-{
+void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmADD, a1, a2);
+}
+void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmADC, a1, a2);
+}
+void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmSUB, a1, a2);
+}
+void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmSBB, a1, a2);
+}
+void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmAND, a1, a2);
+}
+void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmOR, a1, a2);
+}
+void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmXOR, a1, a2);
+}
+void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2) {
if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
LOG_ERROR(Common, "Redundant MOV @ %p - bug in JIT?", code);
WriteNormalOp(this, bits, nrmMOV, a1, a2);
}
-void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);}
-void XEmitter::CMP (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);}
-void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);}
+void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmTEST, a1, a2);
+}
+void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2) {
+ CheckFlags();
+ WriteNormalOp(this, bits, nrmCMP, a1, a2);
+}
+void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) {
+ WriteNormalOp(this, bits, nrmXCHG, a1, a2);
+}
-void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2)
-{
+void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2) {
CheckFlags();
- if (bits == 8)
- {
+ if (bits == 8) {
ASSERT_MSG(0, "IMUL - illegal bit size!");
return;
}
- if (a1.IsImm())
- {
+ if (a1.IsImm()) {
ASSERT_MSG(0, "IMUL - second arg cannot be imm!");
return;
}
- if (!a2.IsImm())
- {
+ if (!a2.IsImm()) {
ASSERT_MSG(0, "IMUL - third arg must be imm!");
return;
}
@@ -1348,46 +1341,34 @@ void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2)
Write8(0x66);
a1.WriteRex(this, bits, bits, regOp);
- if (a2.GetImmBits() == 8 ||
- (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
- (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
- {
+ if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
+ (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) {
Write8(0x6B);
a1.WriteRest(this, 1, regOp);
Write8((u8)a2.offset);
- }
- else
- {
+ } else {
Write8(0x69);
- if (a2.GetImmBits() == 16 && bits == 16)
- {
+ if (a2.GetImmBits() == 16 && bits == 16) {
a1.WriteRest(this, 2, regOp);
Write16((u16)a2.offset);
- }
- else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
- {
+ } else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) {
a1.WriteRest(this, 4, regOp);
Write32((u32)a2.offset);
- }
- else
- {
+ } else {
ASSERT_MSG(0, "IMUL - unhandled case!");
}
}
}
-void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a)
-{
+void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a) {
CheckFlags();
- if (bits == 8)
- {
+ if (bits == 8) {
ASSERT_MSG(0, "IMUL - illegal bit size!");
return;
}
- if (a.IsImm())
- {
- IMUL(bits, regOp, R(regOp), a) ;
+ if (a.IsImm()) {
+ IMUL(bits, regOp, R(regOp), a);
return;
}
@@ -1399,9 +1380,7 @@ void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a)
a.WriteRest(this, 0, regOp);
}
-
-void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
-{
+void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) {
if (opPrefix)
Write8(opPrefix);
arg.operandReg = regOp;
@@ -1413,13 +1392,11 @@ void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extr
arg.WriteRest(this, extrabytes);
}
-void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
-{
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) {
WriteAVXOp(opPrefix, op, regOp, INVALID_REG, arg, extrabytes);
}
-static int GetVEXmmmmm(u16 op)
-{
+static int GetVEXmmmmm(u16 op) {
// Currently, only 0x38 and 0x3A are used as secondary escape byte.
if ((op >> 8) == 0x3A)
return 3;
@@ -1429,8 +1406,7 @@ static int GetVEXmmmmm(u16 op)
return 1;
}
-static int GetVEXpp(u8 opPrefix)
-{
+static int GetVEXpp(u8 opPrefix) {
if (opPrefix == 0x66)
return 1;
if (opPrefix == 0xF3)
@@ -1441,21 +1417,22 @@ static int GetVEXpp(u8 opPrefix)
return 0;
}
-void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
-{
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ int extrabytes) {
if (!Common::GetCPUCaps().avx)
ASSERT_MSG(0, "Trying to use AVX on a system that doesn't support it. Bad programmer.");
int mmmmm = GetVEXmmmmm(op);
int pp = GetVEXpp(opPrefix);
- // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
+ // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size
+ // here
arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm);
Write8(op & 0xFF);
arg.WriteRest(this, extrabytes, regOp1);
}
// Like the above, but more general; covers GPR-based VEX operations, like BMI1/2
-void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
-{
+void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
+ const OpArg& arg, int extrabytes) {
if (size != 32 && size != 64)
ASSERT_MSG(0, "VEX GPR instructions only support 32-bit and 64-bit modes!");
int mmmmm = GetVEXmmmmm(op);
@@ -1465,49 +1442,50 @@ void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg r
arg.WriteRest(this, extrabytes, regOp1);
}
-void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
-{
+void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
+ const OpArg& arg, int extrabytes) {
CheckFlags();
if (!Common::GetCPUCaps().bmi1)
ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
-void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
-{
+void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
+ const OpArg& arg, int extrabytes) {
CheckFlags();
if (!Common::GetCPUCaps().bmi2)
ASSERT_MSG(0, "Trying to use BMI2 on a system that doesn't support it. Bad programmer.");
WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
-void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6E, dest, arg, 0);}
-void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(0x66, 0x7E, src, arg, 0);}
+void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x6E, dest, arg, 0);
+}
+void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src) {
+ WriteSSEOp(0x66, 0x7E, src, arg, 0);
+}
-void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
-{
+void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) {
#ifdef ARCHITECTURE_x86_64
- // Alternate encoding
- // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
- arg.operandReg = dest;
- Write8(0x66);
- arg.WriteRex(this, 64, 0);
- Write8(0x0f);
- Write8(0x6E);
- arg.WriteRest(this, 0);
+ // Alternate encoding
+ // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
+ arg.operandReg = dest;
+ Write8(0x66);
+ arg.WriteRex(this, 64, 0);
+ Write8(0x0f);
+ Write8(0x6E);
+ arg.WriteRest(this, 0);
#else
- arg.operandReg = dest;
- Write8(0xF3);
- Write8(0x0f);
- Write8(0x7E);
- arg.WriteRest(this, 0);
+ arg.operandReg = dest;
+ Write8(0xF3);
+ Write8(0x0f);
+ Write8(0x7E);
+ arg.WriteRest(this, 0);
#endif
}
-void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
-{
- if (src > 7 || arg.IsSimpleReg())
- {
+void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) {
+ if (src > 7 || arg.IsSimpleReg()) {
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = src;
@@ -1516,9 +1494,7 @@ void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
Write8(0x0f);
Write8(0x7E);
arg.WriteRest(this, 0);
- }
- else
- {
+ } else {
arg.operandReg = src;
arg.WriteRex(this, 0, 0);
Write8(0x66);
@@ -1528,8 +1504,7 @@ void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
}
}
-void XEmitter::WriteMXCSR(OpArg arg, int ext)
-{
+void XEmitter::WriteMXCSR(OpArg arg, int ext) {
if (arg.IsImm() || arg.IsSimpleReg())
ASSERT_MSG(0, "MXCSR - invalid operand");
@@ -1540,143 +1515,357 @@ void XEmitter::WriteMXCSR(OpArg arg, int ext)
arg.WriteRest(this);
}
-void XEmitter::STMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 3);}
-void XEmitter::LDMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 2);}
-
-void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);}
-void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);}
-void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);}
-
-void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);}
-void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);}
-void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);}
-void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);}
-void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);}
-void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);}
-void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);}
-void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);}
-void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);}
-void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);}
-void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);}
-void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);}
-void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);}
-void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);}
-void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseRCP, regOp, arg);}
-void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);}
-
-void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseADD, regOp, arg);}
-void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseADD, regOp, arg);}
-void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);}
-void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);}
-void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseAND, regOp, arg);}
-void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseAND, regOp, arg);}
-void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);}
-void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);}
-void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseOR, regOp, arg);}
-void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseOR, regOp, arg);}
-void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);}
-void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);}
-void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);}
-void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);}
-void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);}
-void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);}
-void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);}
-void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);}
-void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);}
-void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);}
-void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);}
-void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);}
-void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); }
-void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);}
-void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);}
-void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);}
-
-void XEmitter::HADDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);}
-
-void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed
-void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered
-void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered
-void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);}
-
-void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);}
-void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);}
-void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);}
-void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);}
-
-void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);}
-void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);}
-
-void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);}
-void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);}
-void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);}
-void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);}
-
-void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);}
-void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);}
-
-void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); }
-void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); }
-void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); }
-void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); }
-
-void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); }
-void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); }
-void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); }
-void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); }
-
-void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));}
-void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));}
-
-void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);}
-void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);}
-
-void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);}
-void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);}
-void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);}
-void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);}
-void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);}
-void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);}
-
-void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);}
-void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);}
-void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);}
-void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);}
-
-void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);}
-void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);}
-void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);}
-void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);}
-
-void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));}
-
-void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x50, dest, arg);}
-void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x50, dest, arg);}
-
-void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only
+void XEmitter::STMXCSR(const OpArg& memloc) {
+ WriteMXCSR(memloc, 3);
+}
+void XEmitter::LDMXCSR(const OpArg& memloc) {
+ WriteMXCSR(memloc, 2);
+}
+
+void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);
+}
+void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x00, sseMOVNTP, regOp, arg);
+}
+void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x66, sseMOVNTP, regOp, arg);
+}
+
+void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseADD, regOp, arg);
+}
+void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseADD, regOp, arg);
+}
+void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseSUB, regOp, arg);
+}
+void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseSUB, regOp, arg);
+}
+void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) {
+ WriteSSEOp(0xF3, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) {
+ WriteSSEOp(0xF2, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseMUL, regOp, arg);
+}
+void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseMUL, regOp, arg);
+}
+void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseDIV, regOp, arg);
+}
+void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseDIV, regOp, arg);
+}
+void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseMIN, regOp, arg);
+}
+void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseMIN, regOp, arg);
+}
+void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseMAX, regOp, arg);
+}
+void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseMAX, regOp, arg);
+}
+void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseSQRT, regOp, arg);
+}
+void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseSQRT, regOp, arg);
+}
+void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseRCP, regOp, arg);
+}
+void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseRSQRT, regOp, arg);
+}
+
+void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseADD, regOp, arg);
+}
+void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseADD, regOp, arg);
+}
+void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseSUB, regOp, arg);
+}
+void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseSUB, regOp, arg);
+}
+void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) {
+ WriteSSEOp(0x00, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) {
+ WriteSSEOp(0x66, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseAND, regOp, arg);
+}
+void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseAND, regOp, arg);
+}
+void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseANDN, regOp, arg);
+}
+void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseANDN, regOp, arg);
+}
+void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseOR, regOp, arg);
+}
+void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseOR, regOp, arg);
+}
+void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseXOR, regOp, arg);
+}
+void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseXOR, regOp, arg);
+}
+void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseMUL, regOp, arg);
+}
+void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMUL, regOp, arg);
+}
+void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseDIV, regOp, arg);
+}
+void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseDIV, regOp, arg);
+}
+void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseMIN, regOp, arg);
+}
+void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMIN, regOp, arg);
+}
+void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseMAX, regOp, arg);
+}
+void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMAX, regOp, arg);
+}
+void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseSQRT, regOp, arg);
+}
+void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseSQRT, regOp, arg);
+}
+void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseRCP, regOp, arg);
+}
+void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseRSQRT, regOp, arg);
+}
+void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) {
+ WriteSSEOp(0x00, sseSHUF, regOp, arg, 1);
+ Write8(shuffle);
+}
+void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) {
+ WriteSSEOp(0x66, sseSHUF, regOp, arg, 1);
+ Write8(shuffle);
+}
+
+void XEmitter::HADDPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseHADD, regOp, arg);
+}
+
+void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseCOMIS, regOp, arg);
+} // weird that these should be packed
+void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseCOMIS, regOp, arg);
+} // ordered
+void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseUCOMIS, regOp, arg);
+} // unordered
+void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseUCOMIS, regOp, arg);
+}
+
+void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);
+}
+void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);
+}
+void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);
+}
+void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);
+}
+void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);
+}
+void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);
+}
+void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);
+}
+void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);
+}
+
+void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);
+}
+void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg);
+}
+void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg);
+}
+void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg);
+}
+void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg);
+}
+void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg);
+}
+void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg);
+}
+void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) {
+ WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {
+ WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));
+}
+void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {
+ WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));
+}
+
+void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, 0x5A, regOp, arg);
+}
+void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x5A, regOp, arg);
+}
+
+void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, 0x5A, regOp, arg);
+}
+void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, 0x5A, regOp, arg);
+}
+void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, 0x2D, regOp, arg);
+}
+void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, 0x2D, regOp, arg);
+}
+void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, 0x2A, regOp, arg);
+}
+void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, 0x2A, regOp, arg);
+}
+
+void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, 0xE6, regOp, arg);
+}
+void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x00, 0x5B, regOp, arg);
+}
+void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, 0xE6, regOp, arg);
+}
+void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x5B, regOp, arg);
+}
+
+void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF2, 0x2C, regOp, arg);
+}
+void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, 0x2C, regOp, arg);
+}
+void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0xF3, 0x5B, regOp, arg);
+}
+void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xE6, regOp, arg);
+}
+
+void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {
+ WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));
+}
+
+void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x00, 0x50, dest, arg);
+}
+void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x50, dest, arg);
+}
+
+void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0xF2, sseLDDQU, dest, arg);
+} // For integer data only
// THESE TWO ARE UNTESTED.
-void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x14, dest, arg);}
-void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x15, dest, arg);}
+void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x00, 0x14, dest, arg);
+}
+void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x00, 0x15, dest, arg);
+}
-void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x14, dest, arg);}
-void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x15, dest, arg);}
+void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x14, dest, arg);
+}
+void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x15, dest, arg);
+}
-void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg)
-{
- if (Common::GetCPUCaps().sse3)
- {
- WriteSSEOp(0xF2, 0x12, regOp, arg); //SSE3 movddup
- }
- else
- {
+void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg) {
+ if (Common::GetCPUCaps().sse3) {
+ WriteSSEOp(0xF2, 0x12, regOp, arg); // SSE3 movddup
+ } else {
// Simulate this instruction with SSE2 instructions
if (!arg.IsSimpleReg(regOp))
MOVSD(regOp, arg);
@@ -1684,38 +1873,48 @@ void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg)
}
}
-//There are a few more left
+// There are a few more left
// Also some integer instructions are missing
-void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x6B, dest, arg);}
-void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x63, dest, arg);}
-void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x67, dest, arg);}
+void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x6B, dest, arg);
+}
+void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x63, dest, arg);
+}
+void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x67, dest, arg);
+}
-void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x60, dest, arg);}
-void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x61, dest, arg);}
-void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x62, dest, arg);}
-void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6C, dest, arg);}
+void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x60, dest, arg);
+}
+void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x61, dest, arg);
+}
+void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x62, dest, arg);
+}
+void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x6C, dest, arg);
+}
-void XEmitter::PSRLW(X64Reg reg, int shift)
-{
+void XEmitter::PSRLW(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg));
Write8(shift);
}
-void XEmitter::PSRLD(X64Reg reg, int shift)
-{
+void XEmitter::PSRLD(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg));
Write8(shift);
}
-void XEmitter::PSRLQ(X64Reg reg, int shift)
-{
+void XEmitter::PSRLQ(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg));
Write8(shift);
}
-void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg)
-{
+void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg) {
WriteSSEOp(0x66, 0xd3, reg, arg);
}
@@ -1724,20 +1923,17 @@ void XEmitter::PSRLDQ(X64Reg reg, int shift) {
Write8(shift);
}
-void XEmitter::PSLLW(X64Reg reg, int shift)
-{
+void XEmitter::PSLLW(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg));
Write8(shift);
}
-void XEmitter::PSLLD(X64Reg reg, int shift)
-{
+void XEmitter::PSLLD(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg));
Write8(shift);
}
-void XEmitter::PSLLQ(X64Reg reg, int shift)
-{
+void XEmitter::PSLLQ(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg));
Write8(shift);
}
@@ -1747,267 +1943,643 @@ void XEmitter::PSLLDQ(X64Reg reg, int shift) {
Write8(shift);
}
-void XEmitter::PSRAW(X64Reg reg, int shift)
-{
+void XEmitter::PSRAW(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x71, (X64Reg)4, R(reg));
Write8(shift);
}
-void XEmitter::PSRAD(X64Reg reg, int shift)
-{
+void XEmitter::PSRAD(X64Reg reg, int shift) {
WriteSSEOp(0x66, 0x72, (X64Reg)4, R(reg));
Write8(shift);
}
-void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
-{
+void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) {
if (!Common::GetCPUCaps().ssse3)
ASSERT_MSG(0, "Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
-void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
-{
+void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) {
if (!Common::GetCPUCaps().sse4_1)
ASSERT_MSG(0, "Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
-void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);}
-void XEmitter::PTEST(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);}
-void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);}
-void XEmitter::DPPS(X64Reg dest, const OpArg& arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);}
-
-void XEmitter::PMINSB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);}
-void XEmitter::PMINSD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);}
-void XEmitter::PMINUW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);}
-void XEmitter::PMINUD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);}
-void XEmitter::PMAXSB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);}
-void XEmitter::PMAXSD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);}
-void XEmitter::PMAXUW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);}
-void XEmitter::PMAXUD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);}
-
-void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);}
-void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);}
-void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);}
-void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);}
-void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);}
-void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);}
-void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);}
-void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);}
-void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);}
-void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);}
-void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);}
-void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);}
-
-void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);}
-void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);}
-void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);}
-void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); }
-void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); }
-
-void XEmitter::ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);}
-void XEmitter::ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);}
-void XEmitter::ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);}
-void XEmitter::ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);}
-
-void XEmitter::PAND(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDB, dest, arg);}
-void XEmitter::PANDN(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDF, dest, arg);}
-void XEmitter::PXOR(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEF, dest, arg);}
-void XEmitter::POR(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEB, dest, arg);}
-
-void XEmitter::PADDB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFC, dest, arg);}
-void XEmitter::PADDW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFD, dest, arg);}
-void XEmitter::PADDD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFE, dest, arg);}
-void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD4, dest, arg);}
-
-void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEC, dest, arg);}
-void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xED, dest, arg);}
-void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDC, dest, arg);}
-void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDD, dest, arg);}
-
-void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF8, dest, arg);}
-void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF9, dest, arg);}
-void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFA, dest, arg);}
-void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFB, dest, arg);}
-
-void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE8, dest, arg);}
-void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE9, dest, arg);}
-void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD8, dest, arg);}
-void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD9, dest, arg);}
-
-void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE0, dest, arg);}
-void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE3, dest, arg);}
-
-void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x74, dest, arg);}
-void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x75, dest, arg);}
-void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x76, dest, arg);}
-
-void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x64, dest, arg);}
-void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x65, dest, arg);}
-void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x66, dest, arg);}
-
-void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);}
-void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);}
-
-void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF5, dest, arg); }
-void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF6, dest, arg);}
-
-void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEE, dest, arg); }
-void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDE, dest, arg); }
-void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEA, dest, arg); }
-void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDA, dest, arg); }
-
-void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD7, dest, arg); }
-void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);}
-void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);}
-void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) {
+ WriteSSSE3Op(0x66, 0x3800, dest, arg);
+}
+void XEmitter::PTEST(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3817, dest, arg);
+}
+void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x382b, dest, arg);
+}
+void XEmitter::DPPS(X64Reg dest, const OpArg& arg, u8 mask) {
+ WriteSSE41Op(0x66, 0x3A40, dest, arg, 1);
+ Write8(mask);
+}
+
+void XEmitter::PMINSB(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3838, dest, arg);
+}
+void XEmitter::PMINSD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3839, dest, arg);
+}
+void XEmitter::PMINUW(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x383a, dest, arg);
+}
+void XEmitter::PMINUD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x383b, dest, arg);
+}
+void XEmitter::PMAXSB(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x383c, dest, arg);
+}
+void XEmitter::PMAXSD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x383d, dest, arg);
+}
+void XEmitter::PMAXUW(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x383e, dest, arg);
+}
+void XEmitter::PMAXUD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x383f, dest, arg);
+}
+
+void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3820, dest, arg);
+}
+void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3821, dest, arg);
+}
+void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3822, dest, arg);
+}
+void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3823, dest, arg);
+}
+void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3824, dest, arg);
+}
+void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3825, dest, arg);
+}
+void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3830, dest, arg);
+}
+void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3831, dest, arg);
+}
+void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3832, dest, arg);
+}
+void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3833, dest, arg);
+}
+void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3834, dest, arg);
+}
+void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3835, dest, arg);
+}
+
+void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3810, dest, arg);
+}
+void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3814, dest, arg);
+}
+void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) {
+ WriteSSE41Op(0x66, 0x3815, dest, arg);
+}
+void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) {
+ WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1);
+ Write8(blend);
+}
+void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) {
+ WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1);
+ Write8(blend);
+}
+
+void XEmitter::ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode) {
+ WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1);
+ Write8(mode);
+}
+void XEmitter::ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode) {
+ WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1);
+ Write8(mode);
+}
+void XEmitter::ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode) {
+ WriteSSE41Op(0x66, 0x3A08, dest, arg, 1);
+ Write8(mode);
+}
+void XEmitter::ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode) {
+ WriteSSE41Op(0x66, 0x3A09, dest, arg, 1);
+ Write8(mode);
+}
+
+void XEmitter::PAND(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xDB, dest, arg);
+}
+void XEmitter::PANDN(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xDF, dest, arg);
+}
+void XEmitter::PXOR(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xEF, dest, arg);
+}
+void XEmitter::POR(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xEB, dest, arg);
+}
+
+void XEmitter::PADDB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xFC, dest, arg);
+}
+void XEmitter::PADDW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xFD, dest, arg);
+}
+void XEmitter::PADDD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xFE, dest, arg);
+}
+void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xD4, dest, arg);
+}
+
+void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xEC, dest, arg);
+}
+void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xED, dest, arg);
+}
+void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xDC, dest, arg);
+}
+void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xDD, dest, arg);
+}
+
+void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xF8, dest, arg);
+}
+void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xF9, dest, arg);
+}
+void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xFA, dest, arg);
+}
+void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xFB, dest, arg);
+}
+
+void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xE8, dest, arg);
+}
+void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xE9, dest, arg);
+}
+void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xD8, dest, arg);
+}
+void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xD9, dest, arg);
+}
+
+void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xE0, dest, arg);
+}
+void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xE3, dest, arg);
+}
+
+void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x74, dest, arg);
+}
+void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x75, dest, arg);
+}
+void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x76, dest, arg);
+}
+
+void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x64, dest, arg);
+}
+void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x65, dest, arg);
+}
+void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0x66, dest, arg);
+}
+
+void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) {
+ WriteSSEOp(0x66, 0xC5, dest, arg, 1);
+ Write8(subreg);
+}
+void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) {
+ WriteSSEOp(0x66, 0xC4, dest, arg, 1);
+ Write8(subreg);
+}
+
+void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xF5, dest, arg);
+}
+void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xF6, dest, arg);
+}
+
+void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xEE, dest, arg);
+}
+void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xDE, dest, arg);
+}
+void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xEA, dest, arg);
+}
+void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xDA, dest, arg);
+}
+
+void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) {
+ WriteSSEOp(0x66, 0xD7, dest, arg);
+}
+void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) {
+ WriteSSEOp(0x66, 0x70, regOp, arg, 1);
+ Write8(shuffle);
+}
+void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) {
+ WriteSSEOp(0xF2, 0x70, regOp, arg, 1);
+ Write8(shuffle);
+}
+void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) {
+ WriteSSEOp(0xF3, 0x70, regOp, arg, 1);
+ Write8(shuffle);
+}
// VEX
-void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);}
-void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);}
-void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);}
-void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);}
-void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);}
-void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);}
-void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);}
-void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);}
-void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);}
-void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);}
-void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);}
-void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);}
-
-void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); }
-void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); }
-void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); }
-void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); }
-void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); }
-void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); }
-void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); }
-void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); }
-
-void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); }
-void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); }
-void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); }
-void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); }
-
-void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); }
-void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); }
-void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); }
-void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); }
-void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); }
-void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); }
-void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); }
-void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); }
-void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); }
-void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); }
-void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); }
-void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); }
-void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); }
-
-void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);}
-void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);}
-void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);}
-void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);}
-void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);}
-void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);}
-void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);}
-void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);}
-void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);}
+void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);
+}
+void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);
+}
+void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);
+}
+void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);
+}
+void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);
+}
+void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);
+}
+void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);
+}
+void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);
+}
+void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);
+}
+void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) {
+ WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1);
+ Write8(shuffle);
+}
+void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);
+}
+void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);
+}
+
+void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg);
+}
+void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg);
+}
+void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg);
+}
+void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg);
+}
+void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg);
+}
+void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg);
+}
+void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg);
+}
+void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg);
+}
+
+void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg);
+}
+void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg);
+}
+void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg);
+}
+void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg);
+}
+
+void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1);
+}
+
+void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {
+ WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {
+ WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {
+ WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) {
+ WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1);
+ Write8(rotate);
+}
+void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);
+}
+void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);
+}
+void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);
+}
+void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {
+ WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);
+}
+void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) {
+ WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);
+}
+void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) {
+ WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);
+}
+void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) {
+ WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);
+}
+void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {
+ WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {
+ WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);
+}
// Prefixes
-void XEmitter::LOCK() { Write8(0xF0); }
-void XEmitter::REP() { Write8(0xF3); }
-void XEmitter::REPNE() { Write8(0xF2); }
-void XEmitter::FSOverride() { Write8(0x64); }
-void XEmitter::GSOverride() { Write8(0x65); }
+void XEmitter::LOCK() {
+ Write8(0xF0);
+}
+void XEmitter::REP() {
+ Write8(0xF3);
+}
+void XEmitter::REPNE() {
+ Write8(0xF2);
+}
+void XEmitter::FSOverride() {
+ Write8(0x64);
+}
+void XEmitter::GSOverride() {
+ Write8(0x65);
+}
-void XEmitter::FWAIT()
-{
+void XEmitter::FWAIT() {
Write8(0x9B);
}
// TODO: make this more generic
-void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg)
-{
+void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg) {
int mf = 0;
- ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction");
- switch (bits)
- {
- case 32: mf = 0; break;
- case 64: mf = 4; break;
- case 80: mf = 2; break;
- default: ASSERT_MSG(0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)");
+ ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID),
+ "WriteFloatLoadStore: 80 bits not supported for this instruction");
+ switch (bits) {
+ case 32:
+ mf = 0;
+ break;
+ case 64:
+ mf = 4;
+ break;
+ case 80:
+ mf = 2;
+ break;
+ default:
+ ASSERT_MSG(0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)");
}
Write8(0xd9 | mf);
// x87 instructions use the reg field of the ModR/M byte as opcode:
if (bits == 80)
op = op_80b;
- arg.WriteRest(this, 0, (X64Reg) op);
+ arg.WriteRest(this, 0, (X64Reg)op);
}
-void XEmitter::FLD(int bits, const OpArg& src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);}
-void XEmitter::FST(int bits, const OpArg& dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);}
-void XEmitter::FSTP(int bits, const OpArg& dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);}
-void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); }
+void XEmitter::FLD(int bits, const OpArg& src) {
+ WriteFloatLoadStore(bits, floatLD, floatLD80, src);
+}
+void XEmitter::FST(int bits, const OpArg& dest) {
+ WriteFloatLoadStore(bits, floatST, floatINVALID, dest);
+}
+void XEmitter::FSTP(int bits, const OpArg& dest) {
+ WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);
+}
+void XEmitter::FNSTSW_AX() {
+ Write8(0xDF);
+ Write8(0xE0);
+}
-void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); }
+void XEmitter::RDTSC() {
+ Write8(0x0F);
+ Write8(0x31);
+}
void XCodeBlock::PoisonMemory() {
// x86/64: 0xCC = breakpoint
memset(region, 0xCC, region_size);
}
-
}