diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/common/vector_math.h | 333 |
1 files changed, 179 insertions, 154 deletions
diff --git a/src/common/vector_math.h b/src/common/vector_math.h index 108399ae8..7e5af651a 100644 --- a/src/common/vector_math.h +++ b/src/common/vector_math.h @@ -43,70 +43,71 @@ template <typename T> class Vec4; template <typename T> -static inline Vec2<T> MakeVec(const T& x, const T& y); -template <typename T> -static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z); -template <typename T> -static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w); - -template <typename T> class Vec2 { public: T x{}; T y{}; - Vec2() = default; - Vec2(const T& _x, const T& _y) : x(_x), y(_y) {} + constexpr Vec2() = default; + constexpr Vec2(const T& x_, const T& y_) : x(x_), y(y_) {} template <typename T2> - Vec2<T2> Cast() const { - return Vec2<T2>((T2)x, (T2)y); + constexpr Vec2<T2> Cast() const { + return Vec2<T2>(static_cast<T2>(x), static_cast<T2>(y)); } - static Vec2 AssignToAll(const T& f) { - return Vec2<T>(f, f); + static constexpr Vec2 AssignToAll(const T& f) { + return Vec2{f, f}; } - Vec2<decltype(T{} + T{})> operator+(const Vec2& other) const { - return MakeVec(x + other.x, y + other.y); + constexpr Vec2<decltype(T{} + T{})> operator+(const Vec2& other) const { + return {x + other.x, y + other.y}; } - void operator+=(const Vec2& other) { + constexpr Vec2& operator+=(const Vec2& other) { x += other.x; y += other.y; + return *this; } - Vec2<decltype(T{} - T{})> operator-(const Vec2& other) const { - return MakeVec(x - other.x, y - other.y); + constexpr Vec2<decltype(T{} - T{})> operator-(const Vec2& other) const { + return {x - other.x, y - other.y}; } - void operator-=(const Vec2& other) { + constexpr Vec2& operator-=(const Vec2& other) { x -= other.x; y -= other.y; + return *this; } template <typename U = T> - Vec2<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const { - return MakeVec(-x, -y); + constexpr Vec2<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const { + return {-x, -y}; } - Vec2<decltype(T{} * T{})> operator*(const Vec2& other) const { - return MakeVec(x * other.x, y * other.y); + constexpr Vec2<decltype(T{} * T{})> operator*(const Vec2& other) const { + return {x * other.x, y * other.y}; } + template <typename V> - Vec2<decltype(T{} * V{})> operator*(const V& f) const { - return MakeVec(x * f, y * f); + constexpr Vec2<decltype(T{} * V{})> operator*(const V& f) const { + return {x * f, y * f}; } + template <typename V> - void operator*=(const V& f) { + constexpr Vec2& operator*=(const V& f) { *this = *this * f; + return *this; } + template <typename V> - Vec2<decltype(T{} / V{})> operator/(const V& f) const { - return MakeVec(x / f, y / f); + constexpr Vec2<decltype(T{} / V{})> operator/(const V& f) const { + return {x / f, y / f}; } + template <typename V> - void operator/=(const V& f) { + constexpr Vec2& operator/=(const V& f) { *this = *this / f; + return *this; } - T Length2() const { + constexpr T Length2() const { return x * x + y * y; } @@ -118,60 +119,59 @@ public: Vec2 Normalized() const; float Normalize(); // returns the previous length, which is often useful - T& operator[](int i) // allow vector[1] = 3 (vector.y=3) - { + constexpr T& operator[](std::size_t i) { return *((&x) + i); } - T operator[](const int i) const { + constexpr const T& operator[](std::size_t i) const { return *((&x) + i); } - void SetZero() { + constexpr void SetZero() { x = 0; y = 0; } // Common aliases: UV (texel coordinates), ST (texture coordinates) - T& u() { + constexpr T& u() { return x; } - T& v() { + constexpr T& v() { return y; } - T& s() { + constexpr T& s() { return x; } - T& t() { + constexpr T& t() { return y; } - const T& u() const { + constexpr const T& u() const { return x; } - const T& v() const { + constexpr const T& v() const { return y; } - const T& s() const { + constexpr const T& s() const { return x; } - const T& t() const { + constexpr const T& t() const { return y; } // swizzlers - create a subvector of specific components - const Vec2 yx() const { + constexpr Vec2 yx() const { return Vec2(y, x); } - const Vec2 vu() const { + constexpr Vec2 vu() const { return Vec2(y, x); } - const Vec2 ts() const { + constexpr Vec2 ts() const { return Vec2(y, x); } }; template <typename T, typename V> -Vec2<T> operator*(const V& f, const Vec2<T>& vec) { +constexpr Vec2<T> operator*(const V& f, const Vec2<T>& vec) { return Vec2<T>(f * vec.x, f * vec.y); } @@ -196,64 +196,75 @@ public: T y{}; T z{}; - Vec3() = default; - Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {} + constexpr Vec3() = default; + constexpr Vec3(const T& x_, const T& y_, const T& z_) : x(x_), y(y_), z(z_) {} template <typename T2> - Vec3<T2> Cast() const { - return MakeVec<T2>((T2)x, (T2)y, (T2)z); + constexpr Vec3<T2> Cast() const { + return Vec3<T2>(static_cast<T2>(x), static_cast<T2>(y), static_cast<T2>(z)); } // Only implemented for T=int and T=float static Vec3 FromRGB(unsigned int rgb); unsigned int ToRGB() const; // alpha bits set to zero - static Vec3 AssignToAll(const T& f) { - return MakeVec(f, f, f); + static constexpr Vec3 AssignToAll(const T& f) { + return Vec3(f, f, f); } - Vec3<decltype(T{} + T{})> operator+(const Vec3& other) const { - return MakeVec(x + other.x, y + other.y, z + other.z); + constexpr Vec3<decltype(T{} + T{})> operator+(const Vec3& other) const { + return {x + other.x, y + other.y, z + other.z}; } - void operator+=(const Vec3& other) { + + constexpr Vec3& operator+=(const Vec3& other) { x += other.x; y += other.y; z += other.z; + return *this; } - Vec3<decltype(T{} - T{})> operator-(const Vec3& other) const { - return MakeVec(x - other.x, y - other.y, z - other.z); + + constexpr Vec3<decltype(T{} - T{})> operator-(const Vec3& other) const { + return {x - other.x, y - other.y, z - other.z}; } - void operator-=(const Vec3& other) { + + constexpr Vec3& operator-=(const Vec3& other) { x -= other.x; y -= other.y; z -= other.z; + return *this; } template <typename U = T> - Vec3<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const { - return MakeVec(-x, -y, -z); + constexpr Vec3<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const { + return {-x, -y, -z}; } - Vec3<decltype(T{} * T{})> operator*(const Vec3& other) const { - return MakeVec(x * other.x, y * other.y, z * other.z); + + constexpr Vec3<decltype(T{} * T{})> operator*(const Vec3& other) const { + return {x * other.x, y * other.y, z * other.z}; } + template <typename V> - Vec3<decltype(T{} * V{})> operator*(const V& f) const { - return MakeVec(x * f, y * f, z * f); + constexpr Vec3<decltype(T{} * V{})> operator*(const V& f) const { + return {x * f, y * f, z * f}; } + template <typename V> - void operator*=(const V& f) { + constexpr Vec3& operator*=(const V& f) { *this = *this * f; + return *this; } template <typename V> - Vec3<decltype(T{} / V{})> operator/(const V& f) const { - return MakeVec(x / f, y / f, z / f); + constexpr Vec3<decltype(T{} / V{})> operator/(const V& f) const { + return {x / f, y / f, z / f}; } + template <typename V> - void operator/=(const V& f) { + constexpr Vec3& operator/=(const V& f) { *this = *this / f; + return *this; } - T Length2() const { + constexpr T Length2() const { return x * x + y * y + z * z; } @@ -265,78 +276,78 @@ public: Vec3 Normalized() const; float Normalize(); // returns the previous length, which is often useful - T& operator[](int i) // allow vector[2] = 3 (vector.z=3) - { + constexpr T& operator[](std::size_t i) { return *((&x) + i); } - T operator[](const int i) const { + + constexpr const T& operator[](std::size_t i) const { return *((&x) + i); } - void SetZero() { + constexpr void SetZero() { x = 0; y = 0; z = 0; } // Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates) - T& u() { + constexpr T& u() { return x; } - T& v() { + constexpr T& v() { return y; } - T& w() { + constexpr T& w() { return z; } - T& r() { + constexpr T& r() { return x; } - T& g() { + constexpr T& g() { return y; } - T& b() { + constexpr T& b() { return z; } - T& s() { + constexpr T& s() { return x; } - T& t() { + constexpr T& t() { return y; } - T& q() { + constexpr T& q() { return z; } - const T& u() const { + constexpr const T& u() const { return x; } - const T& v() const { + constexpr const T& v() const { return y; } - const T& w() const { + constexpr const T& w() const { return z; } - const T& r() const { + constexpr const T& r() const { return x; } - const T& g() const { + constexpr const T& g() const { return y; } - const T& b() const { + constexpr const T& b() const { return z; } - const T& s() const { + constexpr const T& s() const { return x; } - const T& t() const { + constexpr const T& t() const { return y; } - const T& q() const { + constexpr const T& q() const { return z; } @@ -345,7 +356,7 @@ public: // _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all // component names (x<->r) and permutations (xy<->yx) #define _DEFINE_SWIZZLER2(a, b, name) \ - const Vec2<T> name() const { \ + constexpr Vec2<T> name() const { \ return Vec2<T>(a, b); \ } #define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \ @@ -366,7 +377,7 @@ public: }; template <typename T, typename V> -Vec3<T> operator*(const V& f, const Vec3<T>& vec) { +constexpr Vec3<T> operator*(const V& f, const Vec3<T>& vec) { return Vec3<T>(f * vec.x, f * vec.y, f * vec.z); } @@ -397,66 +408,80 @@ public: T z{}; T w{}; - Vec4() = default; - Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {} + constexpr Vec4() = default; + constexpr Vec4(const T& x_, const T& y_, const T& z_, const T& w_) + : x(x_), y(y_), z(z_), w(w_) {} template <typename T2> - Vec4<T2> Cast() const { - return Vec4<T2>((T2)x, (T2)y, (T2)z, (T2)w); + constexpr Vec4<T2> Cast() const { + return Vec4<T2>(static_cast<T2>(x), static_cast<T2>(y), static_cast<T2>(z), + static_cast<T2>(w)); } // Only implemented for T=int and T=float static Vec4 FromRGBA(unsigned int rgba); unsigned int ToRGBA() const; - static Vec4 AssignToAll(const T& f) { - return Vec4<T>(f, f, f, f); + static constexpr Vec4 AssignToAll(const T& f) { + return Vec4(f, f, f, f); } - Vec4<decltype(T{} + T{})> operator+(const Vec4& other) const { - return MakeVec(x + other.x, y + other.y, z + other.z, w + other.w); + constexpr Vec4<decltype(T{} + T{})> operator+(const Vec4& other) const { + return {x + other.x, y + other.y, z + other.z, w + other.w}; } - void operator+=(const Vec4& other) { + + constexpr Vec4& operator+=(const Vec4& other) { x += other.x; y += other.y; z += other.z; w += other.w; + return *this; } - Vec4<decltype(T{} - T{})> operator-(const Vec4& other) const { - return MakeVec(x - other.x, y - other.y, z - other.z, w - other.w); + + constexpr Vec4<decltype(T{} - T{})> operator-(const Vec4& other) const { + return {x - other.x, y - other.y, z - other.z, w - other.w}; } - void operator-=(const Vec4& other) { + + constexpr Vec4& operator-=(const Vec4& other) { x -= other.x; y -= other.y; z -= other.z; w -= other.w; + return *this; } template <typename U = T> - Vec4<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const { - return MakeVec(-x, -y, -z, -w); + constexpr Vec4<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const { + return {-x, -y, -z, -w}; } - Vec4<decltype(T{} * T{})> operator*(const Vec4& other) const { - return MakeVec(x * other.x, y * other.y, z * other.z, w * other.w); + + constexpr Vec4<decltype(T{} * T{})> operator*(const Vec4& other) const { + return {x * other.x, y * other.y, z * other.z, w * other.w}; } + template <typename V> - Vec4<decltype(T{} * V{})> operator*(const V& f) const { - return MakeVec(x * f, y * f, z * f, w * f); + constexpr Vec4<decltype(T{} * V{})> operator*(const V& f) const { + return {x * f, y * f, z * f, w * f}; } + template <typename V> - void operator*=(const V& f) { + constexpr Vec4& operator*=(const V& f) { *this = *this * f; + return *this; } + template <typename V> - Vec4<decltype(T{} / V{})> operator/(const V& f) const { - return MakeVec(x / f, y / f, z / f, w / f); + constexpr Vec4<decltype(T{} / V{})> operator/(const V& f) const { + return {x / f, y / f, z / f, w / f}; } + template <typename V> - void operator/=(const V& f) { + constexpr Vec4& operator/=(const V& f) { *this = *this / f; + return *this; } - T Length2() const { + constexpr T Length2() const { return x * x + y * y + z * z + w * w; } @@ -468,15 +493,15 @@ public: Vec4 Normalized() const; float Normalize(); // returns the previous length, which is often useful - T& operator[](int i) // allow vector[2] = 3 (vector.z=3) - { + constexpr T& operator[](std::size_t i) { return *((&x) + i); } - T operator[](const int i) const { + + constexpr const T& operator[](std::size_t i) const { return *((&x) + i); } - void SetZero() { + constexpr void SetZero() { x = 0; y = 0; z = 0; @@ -484,29 +509,29 @@ public: } // Common alias: RGBA (colors) - T& r() { + constexpr T& r() { return x; } - T& g() { + constexpr T& g() { return y; } - T& b() { + constexpr T& b() { return z; } - T& a() { + constexpr T& a() { return w; } - const T& r() const { + constexpr const T& r() const { return x; } - const T& g() const { + constexpr const T& g() const { return y; } - const T& b() const { + constexpr const T& b() const { return z; } - const T& a() const { + constexpr const T& a() const { return w; } @@ -518,7 +543,7 @@ public: // DEFINE_SWIZZLER2_COMP2 defines two component functions for all component names (x<->r) and // permutations (xy<->yx) #define _DEFINE_SWIZZLER2(a, b, name) \ - const Vec2<T> name() const { \ + constexpr Vec2<T> name() const { \ return Vec2<T>(a, b); \ } #define DEFINE_SWIZZLER2_COMP1(a, a2) \ @@ -545,7 +570,7 @@ public: #undef _DEFINE_SWIZZLER2 #define _DEFINE_SWIZZLER3(a, b, c, name) \ - const Vec3<T> name() const { \ + constexpr Vec3<T> name() const { \ return Vec3<T>(a, b, c); \ } #define DEFINE_SWIZZLER3_COMP1(a, a2) \ @@ -579,51 +604,51 @@ public: }; template <typename T, typename V> -Vec4<decltype(V{} * T{})> operator*(const V& f, const Vec4<T>& vec) { - return MakeVec(f * vec.x, f * vec.y, f * vec.z, f * vec.w); +constexpr Vec4<decltype(V{} * T{})> operator*(const V& f, const Vec4<T>& vec) { + return {f * vec.x, f * vec.y, f * vec.z, f * vec.w}; } using Vec4f = Vec4<float>; template <typename T> -static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec2<T>& a, const Vec2<T>& b) { +constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec2<T>& a, const Vec2<T>& b) { return a.x * b.x + a.y * b.y; } template <typename T> -static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) { +constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } template <typename T> -static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) { +constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } template <typename T> -static inline Vec3<decltype(T{} * T{} - T{} * T{})> Cross(const Vec3<T>& a, const Vec3<T>& b) { - return MakeVec(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); +constexpr Vec3<decltype(T{} * T{} - T{} * T{})> Cross(const Vec3<T>& a, const Vec3<T>& b) { + return {a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x}; } // linear interpolation via float: 0.0=begin, 1.0=end template <typename X> -static inline decltype(X{} * float{} + X{} * float{}) Lerp(const X& begin, const X& end, - const float t) { +constexpr decltype(X{} * float{} + X{} * float{}) Lerp(const X& begin, const X& end, + const float t) { return begin * (1.f - t) + end * t; } // linear interpolation via int: 0=begin, base=end template <typename X, int base> -static inline decltype((X{} * int{} + X{} * int{}) / base) LerpInt(const X& begin, const X& end, - const int t) { +constexpr decltype((X{} * int{} + X{} * int{}) / base) LerpInt(const X& begin, const X& end, + const int t) { return (begin * (base - t) + end * t) / base; } // bilinear interpolation. s is for interpolating x00-x01 and x10-x11, and t is for the second // interpolation. template <typename X> -inline auto BilinearInterp(const X& x00, const X& x01, const X& x10, const X& x11, const float s, - const float t) { +constexpr auto BilinearInterp(const X& x00, const X& x01, const X& x10, const X& x11, const float s, + const float t) { auto y0 = Lerp(x00, x01, s); auto y1 = Lerp(x10, x11, s); return Lerp(y0, y1, t); @@ -631,42 +656,42 @@ inline auto BilinearInterp(const X& x00, const X& x01, const X& x10, const X& x1 // Utility vector factories template <typename T> -static inline Vec2<T> MakeVec(const T& x, const T& y) { +constexpr Vec2<T> MakeVec(const T& x, const T& y) { return Vec2<T>{x, y}; } template <typename T> -static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z) { +constexpr Vec3<T> MakeVec(const T& x, const T& y, const T& z) { return Vec3<T>{x, y, z}; } template <typename T> -static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) { +constexpr Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) { return MakeVec(x, y, zw[0], zw[1]); } template <typename T> -static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) { +constexpr Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) { return MakeVec(xy[0], xy[1], z); } template <typename T> -static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) { +constexpr Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) { return MakeVec(x, yz[0], yz[1]); } template <typename T> -static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) { +constexpr Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) { return Vec4<T>{x, y, z, w}; } template <typename T> -static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) { +constexpr Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) { return MakeVec(xy[0], xy[1], z, w); } template <typename T> -static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) { +constexpr Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) { return MakeVec(x, yz[0], yz[1], w); } @@ -674,17 +699,17 @@ static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) { // Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error // out soon enough due to misuse of the returned structure. template <typename T> -static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) { +constexpr Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) { return MakeVec(xy[0], xy[1], zw[0], zw[1]); } template <typename T> -static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) { +constexpr Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) { return MakeVec(xyz[0], xyz[1], xyz[2], w); } template <typename T> -static inline Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) { +constexpr Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) { return MakeVec(x, yzw[0], yzw[1], yzw[2]); } |