1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <atomic>
#include <memory>
#include <span>
#include <vector>
#include "audio_core/audio_core.h"
#include "audio_core/common/common.h"
#include "audio_core/sink/sink_stream.h"
#include "common/common_types.h"
#include "common/fixed_point.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
namespace AudioCore::Sink {
void SinkStream::AppendBuffer(SinkBuffer& buffer, std::vector<s16>& samples) {
if (type == StreamType::In) {
queue.enqueue(buffer);
queued_buffers++;
return;
}
constexpr s32 min{std::numeric_limits<s16>::min()};
constexpr s32 max{std::numeric_limits<s16>::max()};
auto yuzu_volume{Settings::Volume()};
if (yuzu_volume > 1.0f) {
yuzu_volume = 0.6f + 20 * std::log10(yuzu_volume);
}
auto volume{system_volume * device_volume * yuzu_volume};
if (system_channels == 6 && device_channels == 2) {
// We're given 6 channels, but our device only outputs 2, so downmix.
static constexpr std::array<f32, 4> down_mix_coeff{1.0f, 0.707f, 0.251f, 0.707f};
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackLeft)] * down_mix_coeff[3]) *
volume)
.to_int()};
const auto right_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackRight)] * down_mix_coeff[3]) *
volume)
.to_int()};
samples[write_index + static_cast<u32>(Channels::FrontLeft)] =
static_cast<s16>(std::clamp(left_sample, min, max));
samples[write_index + static_cast<u32>(Channels::FrontRight)] =
static_cast<s16>(std::clamp(right_sample, min, max));
}
samples.resize(samples.size() / system_channels * device_channels);
} else if (system_channels == 2 && device_channels == 6) {
// We need moar samples! Not all games will provide 6 channel audio.
// TODO: Implement some upmixing here. Currently just passthrough, with other
// channels left as silence.
std::vector<s16> new_samples(samples.size() / system_channels * device_channels, 0);
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontLeft)] = left_sample;
const auto right_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontRight)] = right_sample;
}
samples = std::move(new_samples);
} else if (volume != 1.0f) {
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
}
samples_buffer.Push(samples);
queue.enqueue(buffer);
queued_buffers++;
}
std::vector<s16> SinkStream::ReleaseBuffer(u64 num_samples) {
constexpr s32 min = std::numeric_limits<s16>::min();
constexpr s32 max = std::numeric_limits<s16>::max();
auto samples{samples_buffer.Pop(num_samples)};
// TODO: Up-mix to 6 channels if the game expects it.
// For audio input this is unlikely to ever be the case though.
// Incoming mic volume seems to always be very quiet, so multiply by an additional 8 here.
// TODO: Play with this and find something that works better.
auto volume{system_volume * device_volume * 8};
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
if (samples.size() < num_samples) {
samples.resize(num_samples, 0);
}
return samples;
}
void SinkStream::ClearQueue() {
samples_buffer.Pop();
while (queue.pop()) {
}
queued_buffers = 0;
playing_buffer = {};
playing_buffer.consumed = true;
}
void SinkStream::ProcessAudioIn(std::span<const s16> input_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just return.
if (system.IsPaused() || system.IsShuttingDown()) {
return;
}
if (queued_buffers > max_queue_size) {
Stall();
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, just push the samples and
// continue.
samples_buffer.Push(&input_buffer[frames_written * frame_size],
(num_frames - frames_written) * frame_size);
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min<u64>(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Push(&input_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &input_buffer[(frames_written - 1) * frame_size], frame_size_bytes);
if (queued_buffers <= max_queue_size) {
Unstall();
}
}
void SinkStream::ProcessAudioOutAndRender(std::span<s16> output_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
size_t actual_frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just play silence.
if (system.IsPaused() || system.IsShuttingDown()) {
if (system.IsShuttingDown()) {
release_cv.notify_one();
}
static constexpr std::array<s16, 6> silence{};
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &silence[0], frame_size_bytes);
}
return;
}
// Due to many frames being queued up with nvdec (5 frames or so?), a lot of buffers also get
// queued up (30+) but not all at once, which causes constant stalling here, so just let the
// video play out without attempting to stall.
// Can hopefully remove this later with a more complete NVDEC implementation.
const auto nvdec_active{system.AudioCore().IsNVDECActive()};
// Core timing cannot be paused in single-core mode, so Stall ends up being called over and over
// and never recovers to a normal state, so just skip attempting to sync things on single-core.
if (system.IsMulticore() && !nvdec_active && queued_buffers > max_queue_size) {
Stall();
} else if (system.IsMulticore() && queued_buffers <= max_queue_size) {
Unstall();
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, fill the remaining buffer with
// the last written frame and continue.
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &last_frame[0], frame_size_bytes);
}
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
{ std::unique_lock lk{release_mutex}; }
release_cv.notify_one();
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min<u64>(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Pop(&output_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
actual_frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &output_buffer[(frames_written - 1) * frame_size],
frame_size_bytes);
{
std::scoped_lock lk{sample_count_lock};
last_sample_count_update_time =
Core::Timing::CyclesToUs(system.CoreTiming().GetClockTicks());
min_played_sample_count = max_played_sample_count;
max_played_sample_count += actual_frames_written;
}
if (system.IsMulticore() && queued_buffers <= max_queue_size) {
Unstall();
}
}
void SinkStream::Stall() {
std::scoped_lock lk{stall_guard};
if (stalled_lock) {
return;
}
stalled_lock = system.StallApplication();
}
void SinkStream::Unstall() {
std::scoped_lock lk{stall_guard};
if (!stalled_lock) {
return;
}
system.UnstallApplication();
stalled_lock.unlock();
}
u64 SinkStream::GetExpectedPlayedSampleCount() {
std::scoped_lock lk{sample_count_lock};
auto cur_time{Core::Timing::CyclesToUs(system.CoreTiming().GetClockTicks())};
auto time_delta{cur_time - last_sample_count_update_time};
auto exp_played_sample_count{min_played_sample_count +
(TargetSampleRate * time_delta) / std::chrono::seconds{1}};
return std::min<u64>(exp_played_sample_count, max_played_sample_count);
}
void SinkStream::WaitFreeSpace() {
std::unique_lock lk{release_mutex};
release_cv.wait(
lk, [this]() { return queued_buffers < max_queue_size || system.IsShuttingDown(); });
}
} // namespace AudioCore::Sink
|