summaryrefslogtreecommitdiffstats
path: root/src/core/arm/dynarmic/arm_dynarmic.cpp
blob: 4d2e99ed001b83b7381223420b724a4c82270cc0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <cinttypes>
#include <memory>
#include <dynarmic/A64/a64.h>
#include <dynarmic/A64/config.h>
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "core/arm/dynarmic/arm_dynarmic.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"

namespace Core {

using Vector = Dynarmic::A64::Vector;

class ARM_Dynarmic_Callbacks : public Dynarmic::A64::UserCallbacks {
public:
    explicit ARM_Dynarmic_Callbacks(ARM_Dynarmic& parent) : parent(parent) {}

    u8 MemoryRead8(u64 vaddr) override {
        return Memory::Read8(vaddr);
    }
    u16 MemoryRead16(u64 vaddr) override {
        return Memory::Read16(vaddr);
    }
    u32 MemoryRead32(u64 vaddr) override {
        return Memory::Read32(vaddr);
    }
    u64 MemoryRead64(u64 vaddr) override {
        return Memory::Read64(vaddr);
    }
    Vector MemoryRead128(u64 vaddr) override {
        return {Memory::Read64(vaddr), Memory::Read64(vaddr + 8)};
    }

    void MemoryWrite8(u64 vaddr, u8 value) override {
        Memory::Write8(vaddr, value);
    }
    void MemoryWrite16(u64 vaddr, u16 value) override {
        Memory::Write16(vaddr, value);
    }
    void MemoryWrite32(u64 vaddr, u32 value) override {
        Memory::Write32(vaddr, value);
    }
    void MemoryWrite64(u64 vaddr, u64 value) override {
        Memory::Write64(vaddr, value);
    }
    void MemoryWrite128(u64 vaddr, Vector value) override {
        Memory::Write64(vaddr, value[0]);
        Memory::Write64(vaddr + 8, value[1]);
    }

    void InterpreterFallback(u64 pc, std::size_t num_instructions) override {
        LOG_INFO(Core_ARM, "Unicorn fallback @ 0x{:X} for {} instructions (instr = {:08X})", pc,
                 num_instructions, MemoryReadCode(pc));

        ARM_Interface::ThreadContext ctx;
        parent.SaveContext(ctx);
        parent.inner_unicorn.LoadContext(ctx);
        parent.inner_unicorn.ExecuteInstructions(static_cast<int>(num_instructions));
        parent.inner_unicorn.SaveContext(ctx);
        parent.LoadContext(ctx);
        num_interpreted_instructions += num_instructions;
    }

    void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override {
        switch (exception) {
        case Dynarmic::A64::Exception::WaitForInterrupt:
        case Dynarmic::A64::Exception::WaitForEvent:
        case Dynarmic::A64::Exception::SendEvent:
        case Dynarmic::A64::Exception::SendEventLocal:
        case Dynarmic::A64::Exception::Yield:
            return;
        case Dynarmic::A64::Exception::Breakpoint:
            if (GDBStub::IsServerEnabled()) {
                parent.jit->HaltExecution();
                parent.SetPC(pc);
                Kernel::Thread* thread = Kernel::GetCurrentThread();
                parent.SaveContext(thread->GetContext());
                GDBStub::Break();
                GDBStub::SendTrap(thread, 5);
                return;
            }
            [[fallthrough]];
        default:
            ASSERT_MSG(false, "ExceptionRaised(exception = {}, pc = {:X})",
                       static_cast<std::size_t>(exception), pc);
        }
    }

    void CallSVC(u32 swi) override {
        Kernel::CallSVC(parent.system, swi);
    }

    void AddTicks(u64 ticks) override {
        // Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
        // rough approximation of the amount of executed ticks in the system, it may be thrown off
        // if not all cores are doing a similar amount of work. Instead of doing this, we should
        // device a way so that timing is consistent across all cores without increasing the ticks 4
        // times.
        u64 amortized_ticks = (ticks - num_interpreted_instructions) / Core::NUM_CPU_CORES;
        // Always execute at least one tick.
        amortized_ticks = std::max<u64>(amortized_ticks, 1);

        parent.system.CoreTiming().AddTicks(amortized_ticks);
        num_interpreted_instructions = 0;
    }
    u64 GetTicksRemaining() override {
        return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0LL);
    }
    u64 GetCNTPCT() override {
        return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
    }

    ARM_Dynarmic& parent;
    std::size_t num_interpreted_instructions = 0;
    u64 tpidrro_el0 = 0;
    u64 tpidr_el0 = 0;
};

std::unique_ptr<Dynarmic::A64::Jit> ARM_Dynarmic::MakeJit(Common::PageTable& page_table,
                                                          std::size_t address_space_bits) const {
    Dynarmic::A64::UserConfig config;

    // Callbacks
    config.callbacks = cb.get();

    // Memory
    config.page_table = reinterpret_cast<void**>(page_table.pointers.data());
    config.page_table_address_space_bits = address_space_bits;
    config.silently_mirror_page_table = false;

    // Multi-process state
    config.processor_id = core_index;
    config.global_monitor = &exclusive_monitor.monitor;

    // System registers
    config.tpidrro_el0 = &cb->tpidrro_el0;
    config.tpidr_el0 = &cb->tpidr_el0;
    config.dczid_el0 = 4;
    config.ctr_el0 = 0x8444c004;
    config.cntfrq_el0 = Timing::CNTFREQ;

    // Unpredictable instructions
    config.define_unpredictable_behaviour = true;

    return std::make_unique<Dynarmic::A64::Jit>(config);
}

MICROPROFILE_DEFINE(ARM_Jit_Dynarmic, "ARM JIT", "Dynarmic", MP_RGB(255, 64, 64));

void ARM_Dynarmic::Run() {
    MICROPROFILE_SCOPE(ARM_Jit_Dynarmic);

    jit->Run();
}

void ARM_Dynarmic::Step() {
    cb->InterpreterFallback(jit->GetPC(), 1);
}

ARM_Dynarmic::ARM_Dynarmic(System& system, ExclusiveMonitor& exclusive_monitor,
                           std::size_t core_index)
    : cb(std::make_unique<ARM_Dynarmic_Callbacks>(*this)), inner_unicorn{system},
      core_index{core_index}, system{system},
      exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}

ARM_Dynarmic::~ARM_Dynarmic() = default;

void ARM_Dynarmic::SetPC(u64 pc) {
    jit->SetPC(pc);
}

u64 ARM_Dynarmic::GetPC() const {
    return jit->GetPC();
}

u64 ARM_Dynarmic::GetReg(int index) const {
    return jit->GetRegister(index);
}

void ARM_Dynarmic::SetReg(int index, u64 value) {
    jit->SetRegister(index, value);
}

u128 ARM_Dynarmic::GetVectorReg(int index) const {
    return jit->GetVector(index);
}

void ARM_Dynarmic::SetVectorReg(int index, u128 value) {
    jit->SetVector(index, value);
}

u32 ARM_Dynarmic::GetPSTATE() const {
    return jit->GetPstate();
}

void ARM_Dynarmic::SetPSTATE(u32 pstate) {
    jit->SetPstate(pstate);
}

u64 ARM_Dynarmic::GetTlsAddress() const {
    return cb->tpidrro_el0;
}

void ARM_Dynarmic::SetTlsAddress(VAddr address) {
    cb->tpidrro_el0 = address;
}

u64 ARM_Dynarmic::GetTPIDR_EL0() const {
    return cb->tpidr_el0;
}

void ARM_Dynarmic::SetTPIDR_EL0(u64 value) {
    cb->tpidr_el0 = value;
}

void ARM_Dynarmic::SaveContext(ThreadContext& ctx) {
    ctx.cpu_registers = jit->GetRegisters();
    ctx.sp = jit->GetSP();
    ctx.pc = jit->GetPC();
    ctx.pstate = jit->GetPstate();
    ctx.vector_registers = jit->GetVectors();
    ctx.fpcr = jit->GetFpcr();
    ctx.fpsr = jit->GetFpsr();
    ctx.tpidr = cb->tpidr_el0;
}

void ARM_Dynarmic::LoadContext(const ThreadContext& ctx) {
    jit->SetRegisters(ctx.cpu_registers);
    jit->SetSP(ctx.sp);
    jit->SetPC(ctx.pc);
    jit->SetPstate(ctx.pstate);
    jit->SetVectors(ctx.vector_registers);
    jit->SetFpcr(ctx.fpcr);
    jit->SetFpsr(ctx.fpsr);
    SetTPIDR_EL0(ctx.tpidr);
}

void ARM_Dynarmic::PrepareReschedule() {
    jit->HaltExecution();
}

void ARM_Dynarmic::ClearInstructionCache() {
    jit->ClearCache();
}

void ARM_Dynarmic::ClearExclusiveState() {
    jit->ClearExclusiveState();
}

void ARM_Dynarmic::PageTableChanged(Common::PageTable& page_table,
                                    std::size_t new_address_space_size_in_bits) {
    jit = MakeJit(page_table, new_address_space_size_in_bits);
}

DynarmicExclusiveMonitor::DynarmicExclusiveMonitor(std::size_t core_count) : monitor(core_count) {}
DynarmicExclusiveMonitor::~DynarmicExclusiveMonitor() = default;

void DynarmicExclusiveMonitor::SetExclusive(std::size_t core_index, VAddr addr) {
    // Size doesn't actually matter.
    monitor.Mark(core_index, addr, 16);
}

void DynarmicExclusiveMonitor::ClearExclusive() {
    monitor.Clear();
}

bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {
    return monitor.DoExclusiveOperation(core_index, vaddr, 1,
                                        [&] { Memory::Write8(vaddr, value); });
}

bool DynarmicExclusiveMonitor::ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) {
    return monitor.DoExclusiveOperation(core_index, vaddr, 2,
                                        [&] { Memory::Write16(vaddr, value); });
}

bool DynarmicExclusiveMonitor::ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) {
    return monitor.DoExclusiveOperation(core_index, vaddr, 4,
                                        [&] { Memory::Write32(vaddr, value); });
}

bool DynarmicExclusiveMonitor::ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) {
    return monitor.DoExclusiveOperation(core_index, vaddr, 8,
                                        [&] { Memory::Write64(vaddr, value); });
}

bool DynarmicExclusiveMonitor::ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) {
    return monitor.DoExclusiveOperation(core_index, vaddr, 16, [&] {
        Memory::Write64(vaddr + 0, value[0]);
        Memory::Write64(vaddr + 8, value[1]);
    });
}

} // namespace Core