summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/thread.cpp
blob: 58b06aa9eccad8050d3b48995aad367f05135c71 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <cinttypes>
#include <optional>
#include <vector>

#include "common/assert.h"
#include "common/common_types.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#endif
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/exclusive_monitor.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/memory.h"

namespace Kernel {

bool Thread::ShouldWait(const Thread* thread) const {
    return status != ThreadStatus::Dead;
}

bool Thread::IsSignaled() const {
    return status == ThreadStatus::Dead;
}

void Thread::Acquire(Thread* thread) {
    ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}

Thread::Thread(KernelCore& kernel) : SynchronizationObject{kernel} {}
Thread::~Thread() = default;

void Thread::Stop() {
    {
        SchedulerLock lock(kernel);
        // Cancel any outstanding wakeup events for this thread
        Core::System::GetInstance().CoreTiming().UnscheduleEvent(
            kernel.ThreadWakeupCallbackEventType(), global_handle);
        SetStatus(ThreadStatus::Dead);
        Signal();
        kernel.GlobalHandleTable().Close(global_handle);

        if (owner_process) {
            owner_process->UnregisterThread(this);

            // Mark the TLS slot in the thread's page as free.
            owner_process->FreeTLSRegion(tls_address);
        }
    }
    global_handle = 0;
}

void Thread::WakeAfterDelay(s64 nanoseconds) {
    // Don't schedule a wakeup if the thread wants to wait forever
    if (nanoseconds == -1)
        return;

    // This function might be called from any thread so we have to be cautious and use the
    // thread-safe version of ScheduleEvent.
    Core::System::GetInstance().CoreTiming().ScheduleEvent(
        nanoseconds, kernel.ThreadWakeupCallbackEventType(), global_handle);
}

void Thread::CancelWakeupTimer() {
    Core::System::GetInstance().CoreTiming().UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(),
                                                             global_handle);
}

void Thread::ResumeFromWait() {
    SchedulerLock lock(kernel);
    switch (status) {
    case ThreadStatus::Paused:
    case ThreadStatus::WaitSynch:
    case ThreadStatus::WaitHLEEvent:
    case ThreadStatus::WaitSleep:
    case ThreadStatus::WaitIPC:
    case ThreadStatus::WaitMutex:
    case ThreadStatus::WaitCondVar:
    case ThreadStatus::WaitArb:
    case ThreadStatus::Dormant:
        break;

    case ThreadStatus::Ready:
        // The thread's wakeup callback must have already been cleared when the thread was first
        // awoken.
        ASSERT(hle_callback == nullptr);
        // If the thread is waiting on multiple wait objects, it might be awoken more than once
        // before actually resuming. We can ignore subsequent wakeups if the thread status has
        // already been set to ThreadStatus::Ready.
        return;

    case ThreadStatus::Running:
        DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId());
        return;
    case ThreadStatus::Dead:
        // This should never happen, as threads must complete before being stopped.
        DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
                         GetObjectId());
        return;
    }

    SetStatus(ThreadStatus::Ready);
}

void Thread::OnWakeUp() {
    SchedulerLock lock(kernel);

    SetStatus(ThreadStatus::Ready);
}

ResultCode Thread::Start() {
    SchedulerLock lock(kernel);
    SetStatus(ThreadStatus::Ready);
    return RESULT_SUCCESS;
}

void Thread::CancelWait() {
    SchedulerLock lock(kernel);
    if (GetSchedulingStatus() != ThreadSchedStatus::Paused || !is_waiting_on_sync) {
        is_sync_cancelled = true;
        return;
    }
    // TODO(Blinkhawk): Implement cancel of server session
    is_sync_cancelled = false;
    SetSynchronizationResults(nullptr, ERR_SYNCHRONIZATION_CANCELED);
    SetStatus(ThreadStatus::Ready);
}

static void ResetThreadContext32(Core::ARM_Interface::ThreadContext32& context, u32 stack_top,
                                 u32 entry_point, u32 arg) {
    context = {};
    context.cpu_registers[0] = arg;
    context.cpu_registers[15] = entry_point;
    context.cpu_registers[13] = stack_top;
}

static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context, VAddr stack_top,
                                 VAddr entry_point, u64 arg) {
    context = {};
    context.cpu_registers[0] = arg;
    context.pc = entry_point;
    context.sp = stack_top;
    // TODO(merry): Perform a hardware test to determine the below value.
    context.fpcr = 0;
}

std::shared_ptr<Common::Fiber> Thread::GetHostContext() const {
    return host_context;
}

ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadType type_flags,
                                                  std::string name, VAddr entry_point, u32 priority,
                                                  u64 arg, s32 processor_id, VAddr stack_top,
                                                  Process* owner_process) {
    std::function<void(void*)> init_func = system.GetCpuManager().GetGuestThreadStartFunc();
    void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
    return Create(system, type_flags, name, entry_point, priority, arg, processor_id, stack_top,
                  owner_process, std::move(init_func), init_func_parameter);
}

ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadType type_flags,
                                                  std::string name, VAddr entry_point, u32 priority,
                                                  u64 arg, s32 processor_id, VAddr stack_top,
                                                  Process* owner_process,
                                                  std::function<void(void*)>&& thread_start_func,
                                                  void* thread_start_parameter) {
    auto& kernel = system.Kernel();
    // Check if priority is in ranged. Lowest priority -> highest priority id.
    if (priority > THREADPRIO_LOWEST && ((type_flags & THREADTYPE_IDLE) == 0)) {
        LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
        return ERR_INVALID_THREAD_PRIORITY;
    }

    if (processor_id > THREADPROCESSORID_MAX) {
        LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
        return ERR_INVALID_PROCESSOR_ID;
    }

    if (owner_process) {
        if (!system.Memory().IsValidVirtualAddress(*owner_process, entry_point)) {
            LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
            // TODO (bunnei): Find the correct error code to use here
            return RESULT_UNKNOWN;
        }
    }

    std::shared_ptr<Thread> thread = std::make_shared<Thread>(kernel);

    thread->thread_id = kernel.CreateNewThreadID();
    thread->status = ThreadStatus::Dormant;
    thread->entry_point = entry_point;
    thread->stack_top = stack_top;
    thread->tpidr_el0 = 0;
    thread->nominal_priority = thread->current_priority = priority;
    thread->last_running_ticks = 0;
    thread->processor_id = processor_id;
    thread->ideal_core = processor_id;
    thread->affinity_mask = 1ULL << processor_id;
    thread->wait_objects = nullptr;
    thread->mutex_wait_address = 0;
    thread->condvar_wait_address = 0;
    thread->wait_handle = 0;
    thread->name = std::move(name);
    thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
    thread->owner_process = owner_process;
    thread->type = type_flags;
    if ((type_flags & THREADTYPE_IDLE) == 0) {
        auto& scheduler = kernel.GlobalScheduler();
        scheduler.AddThread(thread);
    }
    if (owner_process) {
        thread->tls_address = thread->owner_process->CreateTLSRegion();
        thread->owner_process->RegisterThread(thread.get());
    } else {
        thread->tls_address = 0;
    }
    // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
    // to initialize the context
    thread->arm_interface.reset();
    if ((type_flags & THREADTYPE_HLE) == 0) {
#ifdef ARCHITECTURE_x86_64
        if (owner_process && !owner_process->Is64BitProcess()) {
            thread->arm_interface = std::make_unique<Core::ARM_Dynarmic_32>(
                system, kernel.Interrupts(), kernel.GetExclusiveMonitor(), processor_id);
        } else {
            thread->arm_interface = std::make_unique<Core::ARM_Dynarmic_64>(
                system, kernel.Interrupts(), kernel.GetExclusiveMonitor(), processor_id);
        }

#else
        if (owner_process && !owner_process->Is64BitProcess()) {
            thread->arm_interface = std::make_shared<Core::ARM_Unicorn>(
                system, kernel.Interrupts(), ARM_Unicorn::Arch::AArch32, processor_id);
        } else {
            thread->arm_interface = std::make_shared<Core::ARM_Unicorn>(
                system, kernel.Interrupts(), ARM_Unicorn::Arch::AArch64, processor_id);
        }
        LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
        ResetThreadContext32(thread->context_32, static_cast<u32>(stack_top),
                             static_cast<u32>(entry_point), static_cast<u32>(arg));
        ResetThreadContext64(thread->context_64, stack_top, entry_point, arg);
    }
    thread->host_context =
        std::make_shared<Common::Fiber>(std::move(thread_start_func), thread_start_parameter);

    return MakeResult<std::shared_ptr<Thread>>(std::move(thread));
}

void Thread::SetPriority(u32 priority) {
    SchedulerLock lock(kernel);
    ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
               "Invalid priority value.");
    nominal_priority = priority;
    UpdatePriority();
}

void Thread::SetWaitSynchronizationResult(ResultCode result) {
    UNREACHABLE();
}

void Thread::SetWaitSynchronizationOutput(s32 output) {
    UNREACHABLE();
}

void Thread::SetSynchronizationResults(SynchronizationObject* object, ResultCode result) {
    signaling_object = object;
    signaling_result = result;
}

s32 Thread::GetSynchronizationObjectIndex(std::shared_ptr<SynchronizationObject> object) const {
    ASSERT_MSG(!wait_objects->empty(), "Thread is not waiting for anything");
    const auto match = std::find(wait_objects->rbegin(), wait_objects->rend(), object);
    return static_cast<s32>(std::distance(match, wait_objects->rend()) - 1);
}

VAddr Thread::GetCommandBufferAddress() const {
    // Offset from the start of TLS at which the IPC command buffer begins.
    constexpr u64 command_header_offset = 0x80;
    return GetTLSAddress() + command_header_offset;
}

Core::ARM_Interface& Thread::ArmInterface() {
    return *arm_interface;
}

const Core::ARM_Interface& Thread::ArmInterface() const {
    return *arm_interface;
}

void Thread::SetStatus(ThreadStatus new_status) {
    if (new_status == status) {
        return;
    }

    switch (new_status) {
    case ThreadStatus::Ready:
    case ThreadStatus::Running:
        SetSchedulingStatus(ThreadSchedStatus::Runnable);
        break;
    case ThreadStatus::Dormant:
        SetSchedulingStatus(ThreadSchedStatus::None);
        break;
    case ThreadStatus::Dead:
        SetSchedulingStatus(ThreadSchedStatus::Exited);
        break;
    default:
        SetSchedulingStatus(ThreadSchedStatus::Paused);
        break;
    }

    status = new_status;
}

void Thread::AddMutexWaiter(std::shared_ptr<Thread> thread) {
    if (thread->lock_owner.get() == this) {
        // If the thread is already waiting for this thread to release the mutex, ensure that the
        // waiters list is consistent and return without doing anything.
        const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
        ASSERT(iter != wait_mutex_threads.end());
        return;
    }

    // A thread can't wait on two different mutexes at the same time.
    ASSERT(thread->lock_owner == nullptr);

    // Ensure that the thread is not already in the list of mutex waiters
    const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
    ASSERT(iter == wait_mutex_threads.end());

    // Keep the list in an ordered fashion
    const auto insertion_point = std::find_if(
        wait_mutex_threads.begin(), wait_mutex_threads.end(),
        [&thread](const auto& entry) { return entry->GetPriority() > thread->GetPriority(); });
    wait_mutex_threads.insert(insertion_point, thread);
    thread->lock_owner = SharedFrom(this);

    UpdatePriority();
}

void Thread::RemoveMutexWaiter(std::shared_ptr<Thread> thread) {
    ASSERT(thread->lock_owner.get() == this);

    // Ensure that the thread is in the list of mutex waiters
    const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
    ASSERT(iter != wait_mutex_threads.end());

    wait_mutex_threads.erase(iter);

    thread->lock_owner = nullptr;
    UpdatePriority();
}

void Thread::UpdatePriority() {
    // If any of the threads waiting on the mutex have a higher priority
    // (taking into account priority inheritance), then this thread inherits
    // that thread's priority.
    u32 new_priority = nominal_priority;
    if (!wait_mutex_threads.empty()) {
        if (wait_mutex_threads.front()->current_priority < new_priority) {
            new_priority = wait_mutex_threads.front()->current_priority;
        }
    }

    if (new_priority == current_priority) {
        return;
    }

    if (GetStatus() == ThreadStatus::WaitCondVar) {
        owner_process->RemoveConditionVariableThread(SharedFrom(this));
    }

    SetCurrentPriority(new_priority);

    if (GetStatus() == ThreadStatus::WaitCondVar) {
        owner_process->InsertConditionVariableThread(SharedFrom(this));
    }

    if (!lock_owner) {
        return;
    }

    // Ensure that the thread is within the correct location in the waiting list.
    auto old_owner = lock_owner;
    lock_owner->RemoveMutexWaiter(SharedFrom(this));
    old_owner->AddMutexWaiter(SharedFrom(this));

    // Recursively update the priority of the thread that depends on the priority of this one.
    lock_owner->UpdatePriority();
}

bool Thread::AllSynchronizationObjectsReady() const {
    return std::none_of(wait_objects->begin(), wait_objects->end(),
                        [this](const std::shared_ptr<SynchronizationObject>& object) {
                            return object->ShouldWait(this);
                        });
}

bool Thread::InvokeWakeupCallback(ThreadWakeupReason reason, std::shared_ptr<Thread> thread,
                                  std::shared_ptr<SynchronizationObject> object,
                                  std::size_t index) {
    ASSERT(wakeup_callback);
    return wakeup_callback(reason, std::move(thread), std::move(object), index);
}

bool Thread::InvokeHLECallback(std::shared_ptr<Thread> thread) {
    ASSERT(hle_callback);
    return hle_callback(std::move(thread));
}

ResultCode Thread::SetActivity(ThreadActivity value) {
    SchedulerLock lock(kernel);

    auto sched_status = GetSchedulingStatus();

    if (sched_status != ThreadSchedStatus::Runnable && sched_status != ThreadSchedStatus::Paused) {
        return ERR_INVALID_STATE;
    }

    if (IsPendingTermination()) {
        return RESULT_SUCCESS;
    }

    if (value == ThreadActivity::Paused) {
        if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) != 0) {
            return ERR_INVALID_STATE;
        }
        AddSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
    } else {
        if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) == 0) {
            return ERR_INVALID_STATE;
        }
        RemoveSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
    }
    return RESULT_SUCCESS;
}

ResultCode Thread::Sleep(s64 nanoseconds) {
    Handle event_handle{};
    {
        SchedulerLockAndSleep lock(kernel, event_handle, this, nanoseconds);
        SetStatus(ThreadStatus::WaitSleep);
    }

    if (event_handle != InvalidHandle) {
        auto& time_manager = kernel.TimeManager();
        time_manager.UnscheduleTimeEvent(event_handle);
    }
    return RESULT_SUCCESS;
}

std::pair<ResultCode, bool> Thread::YieldSimple() {
    bool is_redundant = false;
    {
        SchedulerLock lock(kernel);
        is_redundant = kernel.GlobalScheduler().YieldThread(this);
    }
    return {RESULT_SUCCESS, is_redundant};
}

std::pair<ResultCode, bool> Thread::YieldAndBalanceLoad() {
    bool is_redundant = false;
    {
        SchedulerLock lock(kernel);
        is_redundant = kernel.GlobalScheduler().YieldThreadAndBalanceLoad(this);
    }
    return {RESULT_SUCCESS, is_redundant};
}

std::pair<ResultCode, bool> Thread::YieldAndWaitForLoadBalancing() {
    bool is_redundant = false;
    {
        SchedulerLock lock(kernel);
        is_redundant = kernel.GlobalScheduler().YieldThreadAndWaitForLoadBalancing(this);
    }
    return {RESULT_SUCCESS, is_redundant};
}

void Thread::AddSchedulingFlag(ThreadSchedFlags flag) {
    const u32 old_state = scheduling_state;
    pausing_state |= static_cast<u32>(flag);
    const u32 base_scheduling = static_cast<u32>(GetSchedulingStatus());
    scheduling_state = base_scheduling | pausing_state;
    kernel.GlobalScheduler().AdjustSchedulingOnStatus(this, old_state);
}

void Thread::RemoveSchedulingFlag(ThreadSchedFlags flag) {
    const u32 old_state = scheduling_state;
    pausing_state &= ~static_cast<u32>(flag);
    const u32 base_scheduling = static_cast<u32>(GetSchedulingStatus());
    scheduling_state = base_scheduling | pausing_state;
    kernel.GlobalScheduler().AdjustSchedulingOnStatus(this, old_state);
}

void Thread::SetSchedulingStatus(ThreadSchedStatus new_status) {
    const u32 old_state = scheduling_state;
    scheduling_state = (scheduling_state & static_cast<u32>(ThreadSchedMasks::HighMask)) |
                       static_cast<u32>(new_status);
    kernel.GlobalScheduler().AdjustSchedulingOnStatus(this, old_state);
}

void Thread::SetCurrentPriority(u32 new_priority) {
    const u32 old_priority = std::exchange(current_priority, new_priority);
    kernel.GlobalScheduler().AdjustSchedulingOnPriority(this, old_priority);
}

ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
    SchedulerLock lock(kernel);
    const auto HighestSetCore = [](u64 mask, u32 max_cores) {
        for (s32 core = static_cast<s32>(max_cores - 1); core >= 0; core--) {
            if (((mask >> core) & 1) != 0) {
                return core;
            }
        }
        return -1;
    };

    const bool use_override = affinity_override_count != 0;
    if (new_core == THREADPROCESSORID_DONT_UPDATE) {
        new_core = use_override ? ideal_core_override : ideal_core;
        if ((new_affinity_mask & (1ULL << new_core)) == 0) {
            LOG_ERROR(Kernel, "New affinity mask is incorrect! new_core={}, new_affinity_mask={}",
                      new_core, new_affinity_mask);
            return ERR_INVALID_COMBINATION;
        }
    }
    if (use_override) {
        ideal_core_override = new_core;
        affinity_mask_override = new_affinity_mask;
    } else {
        const u64 old_affinity_mask = std::exchange(affinity_mask, new_affinity_mask);
        ideal_core = new_core;
        if (old_affinity_mask != new_affinity_mask) {
            const s32 old_core = processor_id;
            if (processor_id >= 0 && ((affinity_mask >> processor_id) & 1) == 0) {
                if (static_cast<s32>(ideal_core) < 0) {
                    processor_id = HighestSetCore(affinity_mask, Core::Hardware::NUM_CPU_CORES);
                } else {
                    processor_id = ideal_core;
                }
            }
            kernel.GlobalScheduler().AdjustSchedulingOnAffinity(this, old_affinity_mask, old_core);
        }
    }
    return RESULT_SUCCESS;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * Gets the current thread
 */
Thread* GetCurrentThread() {
    return Core::System::GetInstance().CurrentScheduler().GetCurrentThread();
}

} // namespace Kernel