summaryrefslogtreecommitdiffstats
path: root/src/core/hle/service/gsp_gpu.cpp
blob: a8c1331ed728cefb5b3c1bc655c966e59c1fcfad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "common/bit_field.h"
#include "common/microprofile.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/result.h"
#include "core/hw/gpu.h"
#include "core/hw/hw.h"
#include "core/hw/lcd.h"
#include "core/memory.h"
#include "gsp_gpu.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/gpu_debugger.h"

// Main graphics debugger object - TODO: Here is probably not the best place for this
GraphicsDebugger g_debugger;

namespace Service {
namespace GSP {

// Beginning address of HW regs
const u32 REGS_BEGIN = 0x1EB00000;

const ResultCode ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED(
    ErrorDescription::OutofRangeOrMisalignedAddress, ErrorModule::GX, ErrorSummary::InvalidArgument,
    ErrorLevel::Usage); // 0xE0E02A01
const ResultCode ERR_GSP_REGS_MISALIGNED(ErrorDescription::MisalignedSize, ErrorModule::GX,
                                         ErrorSummary::InvalidArgument,
                                         ErrorLevel::Usage); // 0xE0E02BF2
const ResultCode ERR_GSP_REGS_INVALID_SIZE(ErrorDescription::InvalidSize, ErrorModule::GX,
                                           ErrorSummary::InvalidArgument,
                                           ErrorLevel::Usage); // 0xE0E02BEC

/// Event triggered when GSP interrupt has been signalled
Kernel::SharedPtr<Kernel::Event> g_interrupt_event;
/// GSP shared memoryings
Kernel::SharedPtr<Kernel::SharedMemory> g_shared_memory;
/// Thread index into interrupt relay queue
u32 g_thread_id = 0;

static bool gpu_right_acquired = false;
static bool first_initialization = true;
/// Gets a pointer to a thread command buffer in GSP shared memory
static inline u8* GetCommandBuffer(u32 thread_id) {
    return g_shared_memory->GetPointer(0x800 + (thread_id * sizeof(CommandBuffer)));
}

FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index) {
    DEBUG_ASSERT_MSG(screen_index < 2, "Invalid screen index");

    // For each thread there are two FrameBufferUpdate fields
    u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate);
    u8* ptr = g_shared_memory->GetPointer(offset);
    return reinterpret_cast<FrameBufferUpdate*>(ptr);
}

/// Gets a pointer to the interrupt relay queue for a given thread index
static inline InterruptRelayQueue* GetInterruptRelayQueue(u32 thread_id) {
    u8* ptr = g_shared_memory->GetPointer(sizeof(InterruptRelayQueue) * thread_id);
    return reinterpret_cast<InterruptRelayQueue*>(ptr);
}

/**
 * Writes a single GSP GPU hardware registers with a single u32 value
 * (For internal use.)
 *
 * @param base_address The address of the register in question
 * @param data Data to be written
 */
static void WriteSingleHWReg(u32 base_address, u32 data) {
    DEBUG_ASSERT_MSG((base_address & 3) == 0 && base_address < 0x420000,
                     "Write address out of range or misaligned");
    HW::Write<u32>(base_address + REGS_BEGIN, data);
}

/**
 * Writes sequential GSP GPU hardware registers using an array of source data
 *
 * @param base_address The address of the first register in the sequence
 * @param size_in_bytes The number of registers to update (size of data)
 * @param data_vaddr A pointer to the source data
 * @return RESULT_SUCCESS if the parameters are valid, error code otherwise
 */
static ResultCode WriteHWRegs(u32 base_address, u32 size_in_bytes, VAddr data_vaddr) {
    // This magic number is verified to be done by the gsp module
    const u32 max_size_in_bytes = 0x80;

    if (base_address & 3 || base_address >= 0x420000) {
        LOG_ERROR(Service_GSP,
                  "Write address was out of range or misaligned! (address=0x%08x, size=0x%08x)",
                  base_address, size_in_bytes);
        return ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED;
    } else if (size_in_bytes <= max_size_in_bytes) {
        if (size_in_bytes & 3) {
            LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes);
            return ERR_GSP_REGS_MISALIGNED;
        } else {
            while (size_in_bytes > 0) {
                WriteSingleHWReg(base_address, Memory::Read32(data_vaddr));

                size_in_bytes -= 4;
                data_vaddr += 4;
                base_address += 4;
            }
            return RESULT_SUCCESS;
        }

    } else {
        LOG_ERROR(Service_GSP, "Out of range size 0x%08x", size_in_bytes);
        return ERR_GSP_REGS_INVALID_SIZE;
    }
}

/**
 * Updates sequential GSP GPU hardware registers using parallel arrays of source data and masks.
 * For each register, the value is updated only where the mask is high
 *
 * @param base_address The address of the first register in the sequence
 * @param size_in_bytes The number of registers to update (size of data)
 * @param data A pointer to the source data to use for updates
 * @param masks A pointer to the masks
 * @return RESULT_SUCCESS if the parameters are valid, error code otherwise
 */
static ResultCode WriteHWRegsWithMask(u32 base_address, u32 size_in_bytes, VAddr data_vaddr,
                                      VAddr masks_vaddr) {
    // This magic number is verified to be done by the gsp module
    const u32 max_size_in_bytes = 0x80;

    if (base_address & 3 || base_address >= 0x420000) {
        LOG_ERROR(Service_GSP,
                  "Write address was out of range or misaligned! (address=0x%08x, size=0x%08x)",
                  base_address, size_in_bytes);
        return ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED;
    } else if (size_in_bytes <= max_size_in_bytes) {
        if (size_in_bytes & 3) {
            LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes);
            return ERR_GSP_REGS_MISALIGNED;
        } else {
            while (size_in_bytes > 0) {
                const u32 reg_address = base_address + REGS_BEGIN;

                u32 reg_value;
                HW::Read<u32>(reg_value, reg_address);

                u32 data = Memory::Read32(data_vaddr);
                u32 mask = Memory::Read32(masks_vaddr);

                // Update the current value of the register only for set mask bits
                reg_value = (reg_value & ~mask) | (data & mask);

                WriteSingleHWReg(base_address, reg_value);

                size_in_bytes -= 4;
                data_vaddr += 4;
                masks_vaddr += 4;
                base_address += 4;
            }
            return RESULT_SUCCESS;
        }

    } else {
        LOG_ERROR(Service_GSP, "Out of range size 0x%08x", size_in_bytes);
        return ERR_GSP_REGS_INVALID_SIZE;
    }
}

/**
 * GSP_GPU::WriteHWRegs service function
 *
 * Writes sequential GSP GPU hardware registers
 *
 *  Inputs:
 *      1 : address of first GPU register
 *      2 : number of registers to write sequentially
 *      4 : pointer to source data array
 */
static void WriteHWRegs(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();
    u32 reg_addr = cmd_buff[1];
    u32 size = cmd_buff[2];
    VAddr src = cmd_buff[4];

    cmd_buff[1] = WriteHWRegs(reg_addr, size, src).raw;
}

/**
 * GSP_GPU::WriteHWRegsWithMask service function
 *
 * Updates sequential GSP GPU hardware registers using masks
 *
 *  Inputs:
 *      1 : address of first GPU register
 *      2 : number of registers to update sequentially
 *      4 : pointer to source data array
 *      6 : pointer to mask array
 */
static void WriteHWRegsWithMask(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();
    u32 reg_addr = cmd_buff[1];
    u32 size = cmd_buff[2];

    VAddr src_data = cmd_buff[4];
    VAddr mask_data = cmd_buff[6];

    cmd_buff[1] = WriteHWRegsWithMask(reg_addr, size, src_data, mask_data).raw;
}

/// Read a GSP GPU hardware register
static void ReadHWRegs(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();
    u32 reg_addr = cmd_buff[1];
    u32 size = cmd_buff[2];

    // TODO: Return proper error codes
    if (reg_addr + size >= 0x420000) {
        LOG_ERROR(Service_GSP, "Read address out of range! (address=0x%08x, size=0x%08x)", reg_addr,
                  size);
        return;
    }

    // size should be word-aligned
    if ((size % 4) != 0) {
        LOG_ERROR(Service_GSP, "Invalid size 0x%08x", size);
        return;
    }

    VAddr dst_vaddr = cmd_buff[0x41];

    while (size > 0) {
        u32 value;
        HW::Read<u32>(value, reg_addr + REGS_BEGIN);

        Memory::Write32(dst_vaddr, value);

        size -= 4;
        dst_vaddr += 4;
        reg_addr += 4;
    }
}

ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info) {
    u32 base_address = 0x400000;
    PAddr phys_address_left = Memory::VirtualToPhysicalAddress(info.address_left);
    PAddr phys_address_right = Memory::VirtualToPhysicalAddress(info.address_right);
    if (info.active_fb == 0) {
        WriteSingleHWReg(
            base_address +
                4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_left1)),
            phys_address_left);
        WriteSingleHWReg(
            base_address +
                4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_right1)),
            phys_address_right);
    } else {
        WriteSingleHWReg(
            base_address +
                4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_left2)),
            phys_address_left);
        WriteSingleHWReg(
            base_address +
                4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].address_right2)),
            phys_address_right);
    }
    WriteSingleHWReg(base_address +
                         4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].stride)),
                     info.stride);
    WriteSingleHWReg(
        base_address +
            4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].color_format)),
        info.format);
    WriteSingleHWReg(
        base_address + 4 * static_cast<u32>(GPU_REG_INDEX(framebuffer_config[screen_id].active_fb)),
        info.shown_fb);

    if (Pica::g_debug_context)
        Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::BufferSwapped, nullptr);

    if (screen_id == 0) {
        MicroProfileFlip();
    }

    return RESULT_SUCCESS;
}

/**
 * GSP_GPU::SetBufferSwap service function
 *
 * Updates GPU display framebuffer configuration using the specified parameters.
 *
 *  Inputs:
 *      1 : Screen ID (0 = top screen, 1 = bottom screen)
 *      2-7 : FrameBufferInfo structure
 *  Outputs:
 *      1: Result code
 */
static void SetBufferSwap(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();
    u32 screen_id = cmd_buff[1];
    FrameBufferInfo* fb_info = (FrameBufferInfo*)&cmd_buff[2];

    cmd_buff[1] = SetBufferSwap(screen_id, *fb_info).raw;
}

/**
 * GSP_GPU::FlushDataCache service function
 *
 * This Function is a no-op, We aren't emulating the CPU cache any time soon.
 *
 *  Inputs:
 *      1 : Address
 *      2 : Size
 *      3 : Value 0, some descriptor for the KProcess Handle
 *      4 : KProcess handle
 *  Outputs:
 *      1 : Result of function, 0 on success, otherwise error code
 */
static void FlushDataCache(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();
    u32 address = cmd_buff[1];
    u32 size = cmd_buff[2];
    u32 process = cmd_buff[4];

    // TODO(purpasmart96): Verify return header on HW

    cmd_buff[1] = RESULT_SUCCESS.raw; // No error

    LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=0x%08X", address,
              size, process);
}

/**
 * GSP_GPU::SetAxiConfigQoSMode service function
 *  Inputs:
 *      1 : Mode, unused in emulator
 *  Outputs:
 *      1 : Result of function, 0 on success, otherwise error code
 */
static void SetAxiConfigQoSMode(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();
    u32 mode = cmd_buff[1];

    cmd_buff[1] = RESULT_SUCCESS.raw; // No error

    LOG_DEBUG(Service_GSP, "(STUBBED) called mode=0x%08X", mode);
}

/**
 * GSP_GPU::RegisterInterruptRelayQueue service function
 *  Inputs:
 *      1 : "Flags" field, purpose is unknown
 *      3 : Handle to GSP synchronization event
 *  Outputs:
 *      1 : Result of function, 0x2A07 on success, otherwise error code
 *      2 : Thread index into GSP command buffer
 *      4 : Handle to GSP shared memory
 */
static void RegisterInterruptRelayQueue(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();
    u32 flags = cmd_buff[1];

    g_interrupt_event = Kernel::g_handle_table.Get<Kernel::Event>(cmd_buff[3]);
    // TODO(mailwl): return right error code instead assert
    ASSERT_MSG((g_interrupt_event != nullptr), "handle is not valid!");

    g_interrupt_event->name = "GSP_GPU::interrupt_event";

    if (first_initialization) {
        // This specific code is required for a successful initialization, rather than 0
        first_initialization = false;
        cmd_buff[1] = ResultCode(ErrorDescription::GPU_FirstInitialization, ErrorModule::GX,
                                 ErrorSummary::Success, ErrorLevel::Success)
                          .raw;
    } else {
        cmd_buff[1] = RESULT_SUCCESS.raw;
    }
    cmd_buff[2] = g_thread_id++;                                             // Thread ID
    cmd_buff[4] = Kernel::g_handle_table.Create(g_shared_memory).MoveFrom(); // GSP shared memory

    g_interrupt_event->Signal(); // TODO(bunnei): Is this correct?

    LOG_WARNING(Service_GSP, "called, flags=0x%08X", flags);
}

/**
 * GSP_GPU::UnregisterInterruptRelayQueue service function
 *  Outputs:
 *      1 : Result of function, 0 on success, otherwise error code
 */
static void UnregisterInterruptRelayQueue(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();

    g_thread_id = 0;
    g_interrupt_event = nullptr;

    cmd_buff[1] = RESULT_SUCCESS.raw;

    LOG_WARNING(Service_GSP, "(STUBBED) called");
}

/**
 * Signals that the specified interrupt type has occurred to userland code
 * @param interrupt_id ID of interrupt that is being signalled
 * @todo This should probably take a thread_id parameter and only signal this thread?
 * @todo This probably does not belong in the GSP module, instead move to video_core
 */
void SignalInterrupt(InterruptId interrupt_id) {
    if (!gpu_right_acquired) {
        return;
    }
    if (nullptr == g_interrupt_event) {
        LOG_WARNING(Service_GSP, "cannot synchronize until GSP event has been created!");
        return;
    }
    if (nullptr == g_shared_memory) {
        LOG_WARNING(Service_GSP, "cannot synchronize until GSP shared memory has been created!");
        return;
    }
    for (int thread_id = 0; thread_id < 0x4; ++thread_id) {
        InterruptRelayQueue* interrupt_relay_queue = GetInterruptRelayQueue(thread_id);
        u8 next = interrupt_relay_queue->index;
        next += interrupt_relay_queue->number_interrupts;
        next = next % 0x34; // 0x34 is the number of interrupt slots

        interrupt_relay_queue->number_interrupts += 1;

        interrupt_relay_queue->slot[next] = interrupt_id;
        interrupt_relay_queue->error_code = 0x0; // No error

        // Update framebuffer information if requested
        // TODO(yuriks): Confirm where this code should be called. It is definitely updated without
        //               executing any GSP commands, only waiting on the event.
        int screen_id =
            (interrupt_id == InterruptId::PDC0) ? 0 : (interrupt_id == InterruptId::PDC1) ? 1 : -1;
        if (screen_id != -1) {
            FrameBufferUpdate* info = GetFrameBufferInfo(thread_id, screen_id);
            if (info->is_dirty) {
                SetBufferSwap(screen_id, info->framebuffer_info[info->index]);
                info->is_dirty.Assign(false);
            }
        }
    }
    g_interrupt_event->Signal();
}

MICROPROFILE_DEFINE(GPU_GSP_DMA, "GPU", "GSP DMA", MP_RGB(100, 0, 255));

/// Executes the next GSP command
static void ExecuteCommand(const Command& command, u32 thread_id) {
    // Utility function to convert register ID to address
    static auto WriteGPURegister = [](u32 id, u32 data) {
        GPU::Write<u32>(0x1EF00000 + 4 * id, data);
    };

    switch (command.id) {

    // GX request DMA - typically used for copying memory from GSP heap to VRAM
    case CommandId::REQUEST_DMA: {
        MICROPROFILE_SCOPE(GPU_GSP_DMA);

        // TODO: Consider attempting rasterizer-accelerated surface blit if that usage is ever
        // possible/likely
        Memory::RasterizerFlushRegion(
            Memory::VirtualToPhysicalAddress(command.dma_request.source_address),
            command.dma_request.size);
        Memory::RasterizerFlushAndInvalidateRegion(
            Memory::VirtualToPhysicalAddress(command.dma_request.dest_address),
            command.dma_request.size);

        // TODO(Subv): These memory accesses should not go through the application's memory mapping.
        // They should go through the GSP module's memory mapping.
        Memory::CopyBlock(command.dma_request.dest_address, command.dma_request.source_address,
                          command.dma_request.size);
        SignalInterrupt(InterruptId::DMA);
        break;
    }
    // TODO: This will need some rework in the future. (why?)
    case CommandId::SUBMIT_GPU_CMDLIST: {
        auto& params = command.submit_gpu_cmdlist;

        if (params.do_flush) {
            // This flag flushes the command list (params.address, params.size) from the cache.
            // Command lists are not processed by the hardware renderer, so we don't need to
            // actually flush them in Citra.
        }

        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.address)),
                         Memory::VirtualToPhysicalAddress(params.address) >> 3);
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.size)),
                         params.size);

        // TODO: Not sure if we are supposed to always write this .. seems to trigger processing
        // though
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.trigger)), 1);

        // TODO(yuriks): Figure out the meaning of the `flags` field.

        break;
    }

    // It's assumed that the two "blocks" behave equivalently.
    // Presumably this is done simply to allow two memory fills to run in parallel.
    case CommandId::SET_MEMORY_FILL: {
        auto& params = command.memory_fill;

        if (params.start1 != 0) {
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].address_start)),
                             Memory::VirtualToPhysicalAddress(params.start1) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].address_end)),
                             Memory::VirtualToPhysicalAddress(params.end1) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].value_32bit)),
                             params.value1);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].control)),
                             params.control1);
        }

        if (params.start2 != 0) {
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_start)),
                             Memory::VirtualToPhysicalAddress(params.start2) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_end)),
                             Memory::VirtualToPhysicalAddress(params.end2) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].value_32bit)),
                             params.value2);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].control)),
                             params.control2);
        }
        break;
    }

    case CommandId::SET_DISPLAY_TRANSFER: {
        auto& params = command.display_transfer;
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.input_address)),
                         Memory::VirtualToPhysicalAddress(params.in_buffer_address) >> 3);
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.output_address)),
                         Memory::VirtualToPhysicalAddress(params.out_buffer_address) >> 3);
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.input_size)),
                         params.in_buffer_size);
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.output_size)),
                         params.out_buffer_size);
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.flags)),
                         params.flags);
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(display_transfer_config.trigger)), 1);
        break;
    }

    case CommandId::SET_TEXTURE_COPY: {
        auto& params = command.texture_copy;
        WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.input_address),
                         Memory::VirtualToPhysicalAddress(params.in_buffer_address) >> 3);
        WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.output_address),
                         Memory::VirtualToPhysicalAddress(params.out_buffer_address) >> 3);
        WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.size),
                         params.size);
        WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.input_size),
                         params.in_width_gap);
        WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.output_size),
                         params.out_width_gap);
        WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.flags), params.flags);

        // NOTE: Actual GSP ORs 1 with current register instead of overwriting. Doesn't seem to
        // matter.
        WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.trigger), 1);
        break;
    }

    case CommandId::CACHE_FLUSH: {
        // NOTE: Rasterizer flushing handled elsewhere in CPU read/write and other GPU handlers
        // Use command.cache_flush.regions to implement this handler
        break;
    }

    default:
        LOG_ERROR(Service_GSP, "unknown command 0x%08X", (int)command.id.Value());
    }

    if (Pica::g_debug_context)
        Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::GSPCommandProcessed,
                                       (void*)&command);
}

/**
 * GSP_GPU::SetLcdForceBlack service function
 *
 * Enable or disable REG_LCDCOLORFILL with the color black.
 *
 *  Inputs:
 *      1: Black color fill flag (0 = don't fill, !0 = fill)
 *  Outputs:
 *      1: Result code
 */
static void SetLcdForceBlack(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();

    bool enable_black = cmd_buff[1] != 0;
    LCD::Regs::ColorFill data = {0};

    // Since data is already zeroed, there is no need to explicitly set
    // the color to black (all zero).
    data.is_enabled.Assign(enable_black);

    LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_top), data.raw);    // Top LCD
    LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_bottom), data.raw); // Bottom LCD

    cmd_buff[1] = RESULT_SUCCESS.raw;
}

/// This triggers handling of the GX command written to the command buffer in shared memory.
static void TriggerCmdReqQueue(Interface* self) {
    // Iterate through each thread's command queue...
    for (unsigned thread_id = 0; thread_id < 0x4; ++thread_id) {
        CommandBuffer* command_buffer = (CommandBuffer*)GetCommandBuffer(thread_id);

        // Iterate through each command...
        for (unsigned i = 0; i < command_buffer->number_commands; ++i) {
            g_debugger.GXCommandProcessed((u8*)&command_buffer->commands[i]);

            // Decode and execute command
            ExecuteCommand(command_buffer->commands[i], thread_id);

            // Indicates that command has completed
            command_buffer->number_commands.Assign(command_buffer->number_commands - 1);
        }
    }

    u32* cmd_buff = Kernel::GetCommandBuffer();
    cmd_buff[1] = 0; // No error
}

/**
 * GSP_GPU::ImportDisplayCaptureInfo service function
 *
 * Returns information about the current framebuffer state
 *
 *  Inputs:
 *      0: Header 0x00180000
 *  Outputs:
 *      0: Header Code[0x00180240]
 *      1: Result code
 *      2: Left framebuffer virtual address for the main screen
 *      3: Right framebuffer virtual address for the main screen
 *      4: Main screen framebuffer format
 *      5: Main screen framebuffer width
 *      6: Left framebuffer virtual address for the bottom screen
 *      7: Right framebuffer virtual address for the bottom screen
 *      8: Bottom screen framebuffer format
 *      9: Bottom screen framebuffer width
 */
static void ImportDisplayCaptureInfo(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();

    // TODO(Subv): We're always returning the framebuffer structures for thread_id = 0,
    // because we only support a single running application at a time.
    // This should always return the framebuffer data that is currently displayed on the screen.

    u32 thread_id = 0;

    FrameBufferUpdate* top_screen = GetFrameBufferInfo(thread_id, 0);
    FrameBufferUpdate* bottom_screen = GetFrameBufferInfo(thread_id, 1);

    cmd_buff[0] = IPC::MakeHeader(0x18, 0x9, 0);
    cmd_buff[1] = RESULT_SUCCESS.raw;
    // Top Screen
    cmd_buff[2] = top_screen->framebuffer_info[top_screen->index].address_left;
    cmd_buff[3] = top_screen->framebuffer_info[top_screen->index].address_right;
    cmd_buff[4] = top_screen->framebuffer_info[top_screen->index].format;
    cmd_buff[5] = top_screen->framebuffer_info[top_screen->index].stride;
    // Bottom Screen
    cmd_buff[6] = bottom_screen->framebuffer_info[bottom_screen->index].address_left;
    cmd_buff[7] = bottom_screen->framebuffer_info[bottom_screen->index].address_right;
    cmd_buff[8] = bottom_screen->framebuffer_info[bottom_screen->index].format;
    cmd_buff[9] = bottom_screen->framebuffer_info[bottom_screen->index].stride;

    LOG_WARNING(Service_GSP, "called");
}

/**
 * GSP_GPU::AcquireRight service function
 *  Outputs:
 *      1: Result code
 */
static void AcquireRight(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();

    gpu_right_acquired = true;

    cmd_buff[1] = RESULT_SUCCESS.raw;

    LOG_WARNING(Service_GSP, "called");
}

/**
 * GSP_GPU::ReleaseRight service function
 *  Outputs:
 *      1: Result code
 */
static void ReleaseRight(Interface* self) {
    u32* cmd_buff = Kernel::GetCommandBuffer();

    gpu_right_acquired = false;

    cmd_buff[1] = RESULT_SUCCESS.raw;

    LOG_WARNING(Service_GSP, "called");
}

const Interface::FunctionInfo FunctionTable[] = {
    {0x00010082, WriteHWRegs, "WriteHWRegs"},
    {0x00020084, WriteHWRegsWithMask, "WriteHWRegsWithMask"},
    {0x00030082, nullptr, "WriteHWRegRepeat"},
    {0x00040080, ReadHWRegs, "ReadHWRegs"},
    {0x00050200, SetBufferSwap, "SetBufferSwap"},
    {0x00060082, nullptr, "SetCommandList"},
    {0x000700C2, nullptr, "RequestDma"},
    {0x00080082, FlushDataCache, "FlushDataCache"},
    {0x00090082, nullptr, "InvalidateDataCache"},
    {0x000A0044, nullptr, "RegisterInterruptEvents"},
    {0x000B0040, SetLcdForceBlack, "SetLcdForceBlack"},
    {0x000C0000, TriggerCmdReqQueue, "TriggerCmdReqQueue"},
    {0x000D0140, nullptr, "SetDisplayTransfer"},
    {0x000E0180, nullptr, "SetTextureCopy"},
    {0x000F0200, nullptr, "SetMemoryFill"},
    {0x00100040, SetAxiConfigQoSMode, "SetAxiConfigQoSMode"},
    {0x00110040, nullptr, "SetPerfLogMode"},
    {0x00120000, nullptr, "GetPerfLog"},
    {0x00130042, RegisterInterruptRelayQueue, "RegisterInterruptRelayQueue"},
    {0x00140000, UnregisterInterruptRelayQueue, "UnregisterInterruptRelayQueue"},
    {0x00150002, nullptr, "TryAcquireRight"},
    {0x00160042, AcquireRight, "AcquireRight"},
    {0x00170000, ReleaseRight, "ReleaseRight"},
    {0x00180000, ImportDisplayCaptureInfo, "ImportDisplayCaptureInfo"},
    {0x00190000, nullptr, "SaveVramSysArea"},
    {0x001A0000, nullptr, "RestoreVramSysArea"},
    {0x001B0000, nullptr, "ResetGpuCore"},
    {0x001C0040, nullptr, "SetLedForceOff"},
    {0x001D0040, nullptr, "SetTestCommand"},
    {0x001E0080, nullptr, "SetInternalPriorities"},
    {0x001F0082, nullptr, "StoreDataCache"},
};

GSP_GPU::GSP_GPU() {
    Register(FunctionTable);

    g_interrupt_event = nullptr;

    using Kernel::MemoryPermission;
    g_shared_memory = Kernel::SharedMemory::Create(nullptr, 0x1000, MemoryPermission::ReadWrite,
                                                   MemoryPermission::ReadWrite, 0,
                                                   Kernel::MemoryRegion::BASE, "GSP:SharedMemory");

    g_thread_id = 0;
    gpu_right_acquired = false;
    first_initialization = true;
}

GSP_GPU::~GSP_GPU() {
    g_interrupt_event = nullptr;
    g_shared_memory = nullptr;
    gpu_right_acquired = false;
}

} // namespace GSP
} // namespace Service