diff options
-rw-r--r-- | šola/ana1/kolokvij1.lyx | 537 |
1 files changed, 537 insertions, 0 deletions
diff --git a/šola/ana1/kolokvij1.lyx b/šola/ana1/kolokvij1.lyx index 249137c..dca6569 100644 --- a/šola/ana1/kolokvij1.lyx +++ b/šola/ana1/kolokvij1.lyx @@ -156,6 +156,50 @@ begin{multicols}{2} \end_layout \begin_layout Standard +\begin_inset Formula $\log_{a}1=0$ +\end_inset + +, +\begin_inset Formula $\log_{a}a=1$ +\end_inset + +, +\begin_inset Formula $\log_{a}a^{x}=x$ +\end_inset + +, +\begin_inset Formula $a^{\log_{a}x}=x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\log_{a}x^{n}=n\log_{a}x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $D=b^{2}-4ac$ +\end_inset + +, +\begin_inset Formula $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard \begin_inset Formula $zw=\left(ac-bd\right)+\left(ad+bc\right)i$ \end_inset @@ -170,6 +214,13 @@ begin{multicols}{2} \begin_inset Formula $\arg\left(zw\right)=\arg z+\arg w$ \end_inset + (kot) +\end_layout + +\begin_layout Standard +\begin_inset Formula $z\overline{z}=a^{2}-\left(bi\right)^{2}=a^{2}+b^{2}$ +\end_inset + \end_layout @@ -196,6 +247,492 @@ begin{multicols}{2} \end_layout \begin_layout Standard +\begin_inset Formula $(a+b)^{n}=\sum_{k=0}^{n}{n \choose k}ab^{n-k}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $z^{n}=r^{3}\left(\cos\left(3\phi\right)+i\sin\left(3\phi\right)\right)$ +\end_inset + +, +\begin_inset Formula $\phi=\arctan\frac{\Im z}{\Re z}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Odprta množica ne vsebuje robnih točk. + Zaprta vsebuje vse. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sin\left(x\pm y\right)=\sin x\cdot\cos y\pm\sin y\cdot\cos x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\cos\left(x\pm y\right)=\cos x\cdot\cos y\mp\sin y\cdot\sin x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\tan\left(x\pm y\right)=\frac{\tan x\pm\tan y}{1\text{\ensuremath{\mp\tan}x\ensuremath{\cdot\tan y}}}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a_{n}$ +\end_inset + +je konv. + +\begin_inset Formula $\Longleftrightarrow$ +\end_inset + + +\begin_inset Formula $\forall\varepsilon>0:\exists n_{0}\ni:\forall n,m:n_{0}<n<m\wedge\vert a_{n}-a_{m}\vert<\varepsilon$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\euler^{1/k}\coloneqq\lim_{n\to\infty}\left(1+\frac{1}{nk}\right)^{n}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Vrsta je konv., če je konv. + njeno zap. + delnih vsot. +\end_layout + +\begin_layout Standard +\begin_inset Formula $s_{n}=\begin{cases} +\frac{1-q^{n+1}}{1-q}; & q\not=1\\ +n+1; & q=1 +\end{cases}$ +\end_inset + +. + Geom. + vrsta konv. + +\begin_inset Formula $\Longleftrightarrow q\in\left(-1,1\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Primerjalni krit. +\series default +: +\begin_inset Formula $\sum_{1}^{\infty}a_{k}$ +\end_inset + + konv. + +\begin_inset Formula $\wedge$ +\end_inset + + +\begin_inset Formula $b_{k}\leq a_{k}$ +\end_inset + +za +\begin_inset Formula $k>n_{0}$ +\end_inset + + +\begin_inset Formula $\wedge$ +\end_inset + + vrsti sta navzdol omejeni +\begin_inset Formula $\Longrightarrow$ +\end_inset + + +\begin_inset Formula $\sum_{1}^{\infty}b_{k}$ +\end_inset + + konv. + +\begin_inset Formula $\sum_{1}^{\infty}a_{k}$ +\end_inset + + rečemo +\shape italic +majoranta +\shape default +. +\end_layout + +\begin_layout Standard + +\series bold +Kvocientni +\series default +: +\begin_inset Formula $a_{k}>0$ +\end_inset + +, +\begin_inset Formula $D_{n}\coloneqq\frac{a_{n}+1}{a_{n}}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall n<n_{0}:D_{n}\in\left(0,1\right)\Longrightarrow\sum_{1}^{\infty}a_{k}<\infty$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall n<n_{0}:D_{n}\geq1\Longrightarrow\sum_{1}^{\infty}a_{k}=\infty$ +\end_inset + + +\end_layout + +\begin_layout Itemize +Če +\begin_inset Formula $\exists D\coloneqq\lim_{n\to\infty}D_{n}$ +\end_inset + +: +\begin_inset Formula $\vert D\vert<1\Longrightarrow$ +\end_inset + +konv., +\begin_inset Formula $\vert D\vert>1\Longrightarrow div.$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Korenski +\series default +: Kot Kvocientni, le da +\begin_inset Formula $D_{n}\coloneqq\sqrt[n]{a_{n}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Leibnizov +\series default +: +\begin_inset Formula $a_{n}\to0\Longrightarrow\sum_{1}^{\infty}\left(\left(-1\right)^{k}a_{k}\right)<\infty$ +\end_inset + + +\end_layout + +\begin_layout Standard +Absolutna konvergenca +\begin_inset Formula $\left(\sum_{1}^{\infty}\vert a_{n}\vert<\infty\right)$ +\end_inset + + +\begin_inset Formula $\Longrightarrow$ +\end_inset + + konvergenca +\end_layout + +\begin_layout Standard +Pri konv. + po točkah je +\begin_inset Formula $n_{0}$ +\end_inset + + odvisen od +\begin_inset Formula $x$ +\end_inset + +, pri enakomerni ni. +\end_layout + +\begin_layout Standard +Potenčna vrsta: +\begin_inset Formula $\sum_{j=1}^{\infty}b_{j}x^{j}$ +\end_inset + +. + +\begin_inset Formula $R^{-1}=\limsup_{k\to\infty}\sqrt[k]{\vert b_{k}\vert}$ +\end_inset + +. + +\begin_inset Formula $\vert x\vert<R\Longrightarrow$ +\end_inset + +abs. + konv., +\begin_inset Formula $\vert x\vert>R\Longrightarrow$ +\end_inset + +divergira +\end_layout + +\begin_layout Standard +\begin_inset Formula $\lim_{x\to a}\left(\alpha f\left(x\right)\right)=\alpha\lim_{x\to a}f\left(x\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Tabular +<lyxtabular version="3" rows="4" columns="4"> +<features tabularvalignment="middle"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\sin$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\cos$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\tan$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $30^{\circ}=\frac{\pi}{6}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{1}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{3}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{3}}{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $45^{\circ}=\frac{\pi}{4}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{2}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{2}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $60^{\circ}=\frac{\pi}{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{3}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{1}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\sqrt{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +</lyxtabular> + +\end_inset + + +\end_layout + +\begin_layout Standard +Krožnica: +\begin_inset Formula $\left(x-p\right)^{2}+\left(y-q\right)^{2}=r^{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Elipsa: +\begin_inset Formula $\frac{\left(x-p\right)^{2}}{a^{2}}+\frac{\left(y-q\right)^{2}}{b^{2}}=1$ +\end_inset + + +\end_layout + +\begin_layout Standard Srečno! \end_layout |